首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In probe-based traffic monitoring systems, traffic conditions can be inferred based on the position data of a set of periodically polled probe vehicles. In such systems, the two consecutive polled positions do not necessarily correspond to the end points of individual links. Obtaining estimates of travel time at the individual link level requires the total traversal time (which is equal to the polling interval duration) be decomposed. This paper presents an algorithm for solving the problem of decomposing the traversal time to times taken to traverse individual road segments on the route. The proposed algorithm assumes minimal information about the network, namely network topography (i.e. links and nodes) and the free flow speed of each link. Unlike existing deterministic methods, the proposed solution algorithm defines a likelihood function that is maximized to solve for the most likely travel time for each road segment on the traversed route. The proposed scheme is evaluated using simulated data and compared to a benchmark deterministic method. The evaluation results suggest that the proposed method outperforms the bench mark method and on average improves the accuracy of the estimated link travel times by up to 90%.  相似文献   

2.
The paper presents a statistical model for urban road network travel time estimation using vehicle trajectories obtained from low frequency GPS probes as observations, where the vehicles typically cover multiple network links between reports. The network model separates trip travel times into link travel times and intersection delays and allows correlation between travel times on different network links based on a spatial moving average (SMA) structure. The observation model presents a way to estimate the parameters of the network model, including the correlation structure, through low frequency sampling of vehicle traces. Link-specific effects are combined with link attributes (speed limit, functional class, etc.) and trip conditions (day of week, season, weather, etc.) as explanatory variables. The approach captures the underlying factors behind spatial and temporal variations in speeds, which is useful for traffic management, planning and forecasting. The model is estimated using maximum likelihood. The model is applied in a case study for the network of Stockholm, Sweden. Link attributes and trip conditions (including recent snowfall) have significant effects on travel times and there is significant positive correlation between segments. The case study highlights the potential of using sparse probe vehicle data for monitoring the performance of the urban transport system.  相似文献   

3.
Travel mode identification is an essential step in travel information detection with global positioning system (GPS) survey data. This paper presents a hybrid procedure for mode identification using large-scale GPS survey data collected in Beijing in 2010. In a first step, subway trips were detected by applying a GPS/geographic information system (GIS) algorithm and a multinomial logit model. A comparison of the identification results reveals that the GPS/GIS method provides higher accuracy. Then, the modes of walking, bicycle, car and bus were determined using a nested logit model. The combined success rate of the hybrid procedure was 86%. These findings can be used to identify travel modes based on GPS survey data, which will significantly improve the efficiency and accuracy of travel surveys and data analysis. By providing crucial travel information, the results also contribute to modeling and analyzing travel behaviors and are readily applicable to a wide range of transportation practices.  相似文献   

4.
This paper explores the accuracy of the transport model forecast of the Gothenburg congestion charges, implemented in 2013. The design of the charging system implies that the path disutility cannot be computed as a sum of link attributes. The route choice model is therefore implemented as a hierarchical algorithm, applying a continuous value of travel time (VTT) distribution. The VTT distribution was estimated from stated choice (SC) data. However, based on experience of impact forecasting with a similar model and of impact outcome of congestion charges in Stockholm, the estimated VTT distribution had to be stretched to the right. We find that the forecast traffic reductions across the cordon and travel time gains were close to those observed in the peak. However, the reduction in traffic across the cordon was underpredicted off-peak. The necessity to make the adjustment indicates that the VTT inferred from SC data does not reveal the travellers’ preferences, or that there are factors determining route choice other than those included in the model: travel distance, travel time and congestion charge.  相似文献   

5.
Effective prediction of bus arrival times is important to advanced traveler information systems (ATIS). Here a hybrid model, based on support vector machine (SVM) and Kalman filtering technique, is presented to predict bus arrival times. In the model, the SVM model predicts the baseline travel times on the basic of historical trips occurring data at given time‐of‐day, weather conditions, route segment, the travel times on the current segment, and the latest travel times on the predicted segment; the Kalman filtering‐based dynamic algorithm uses the latest bus arrival information, together with estimated baseline travel times, to predict arrival times at the next point. The predicted bus arrival times are examined by data of bus no. 7 in a satellite town of Dalian in China. Results show that the hybrid model proposed in this paper is feasible and applicable in bus arrival time forecasting area, and generally provides better performance than artificial neural network (ANN)–based methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper studies link travel time estimation using entry/exit time stamps of trips on a steady-state transportation network. We propose two inference methods based on the likelihood principle, assuming each link associates with a random travel time. The first method considers independent and Gaussian distributed link travel times, using the additive property that trip time has a closed-form distribution as the summation of link travel times. We particularly analyze the mean estimates when the variances of trip time estimates are known with a high degree of precision and examine the uniqueness of solutions. Two cases are discussed in detail: one with known paths of all trips and the other with unknown paths of some trips. We apply the Gaussian mixture model and the Expectation–Maximization (EM) algorithm to deal with the latter. The second method splits trip time proportionally among links traversed to deal with more general link travel time distributions such as log-normal. This approach builds upon an expected log-likelihood function which naturally leads to an iterative procedure analogous to the EM algorithm for solutions. Simulation tests on a simple nine-link network and on the Sioux Falls network respectively indicate that the two methods both perform well. The second method (i.e., trip splitting approximation) generally runs faster but with larger errors of estimated standard deviations of link travel times.  相似文献   

7.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

8.
This paper presents an off‐line forecasting system for short‐term travel time forecasting. These forecasts are based on the historical traffic count data provided by detectors installed on Annual Traffic Census (ATC) stations in Hong Kong. A traffic flow simulator (TFS) is developed for short‐term travel time forecasting (in terms of offline forecasting), in which the variation of perceived travel time error and the fluctuations of origin‐destination (O‐D) demand are considered explicitly. On the basis of prior O‐D demand and partial updated detector data, the TFS can estimate the link travel times and flows for the whole network together with their variances and covariances. The short‐term travel time forecasting by O‐D pair can also be assessed and the O‐D matrix can be updated simultaneously. The application of the proposed off‐line forecasting system is illustrated by a numerical example in Hong Kong.  相似文献   

9.
This paper investigates the transportation network reliability based on the information provided by detectors installed on some links. A traffic flow simulator (TFS) model is formulated for assessing the network reliability (in terms of travel time reliability), in which the variation of perceived travel time error and the fluctuations of origin-destination (OD) demand are explicitly considered. On the basis of prior OD demand and partial updated detector data, the TFS can estimate the link flows for the whole network together with link/path travel times, and their variance and covariance. The travel time reliability by OD pair can also be assessed and the OD matrix can be updated simultaneously. A Monte Carlo based algorithm is developed to solve the TFS model. The application of the proposed TFS model is illustrated by a numerical example.  相似文献   

10.
This study reviews the 50-year history of travel demand forecasting models, concentrating on their accuracy and relevance for public decision-making. Only a few studies of model accuracy have been performed, but they find that the likely inaccuracy in the 20-year forecast of major road projects is ±30 % at minimum, with some estimates as high as ±40–50 % over even shorter time horizons. There is a significant tendency to over-estimate traffic and underestimate costs, particularly for toll roads. Forecasts of transit costs and ridership are even more uncertain and also significantly optimistic. The greatest knowledge gap in US travel demand modeling is the unknown accuracy of US urban road traffic forecasts. Modeling weaknesses leading to these problems (non-behavioral content, inaccuracy of inputs and key assumptions, policy insensitivity, and excessive complexity) are identified. In addition, the institutional and political environments that encourage optimism bias and low risk assessment in forecasts are also reviewed. Major institutional factors, particularly low local funding matches and competitive grants, confound scenario modeling efforts and dampen the hope that technical modeling improvements alone can improve forecasting accuracy. The fundamental problems are not technical but institutional: high non-local funding shares for large projects warp local perceptions of project benefit versus costs, leading to both input errors and political pressure to fund projects. To deal with these issues, the paper outlines two different approaches. The first, termed ‘hubris’, proposes a multi-decade effort to substantially improve model forecasting accuracy over time by monitoring performance and improving data, methods and understanding of travel, but also by deliberately modifying the institutional arrangements that lead to optimism bias. The second, termed ‘humility’, proposes to openly quantify and recognize the inherent uncertainty in travel demand forecasts and deliberately reduce their influence on project decision-making. However to be successful either approach would require monitoring and reporting accuracy, standards for modeling and forecasting, greater model transparency, educational initiatives, coordinated research, strengthened ethics and reduction of non-local funding ratios so that localities have more at stake.  相似文献   

11.
In the research area of dynamic traffic assignment, link travel times can be derived from link cumulative inflow and outflow curves which are generated by dynamic network loading. In this paper, the profiles of cumulative flows are piecewise linearized. Both the step function (SF) and linear interpolation (LI) are used to approximate cumulative flows over time. New formulations of the SF-type and LI-type link travel time models are developed. We prove that these two types of link travel time models ensure first-in-first-out (FIFO) and continuity of travel times with respect to flows, and have other desirable properties. Since the LI-type link travel time model does not satisfy the causality property, a modified LI-type (MLI-type) link travel time model is proposed in this paper. We prove that the MLI-type link travel time model ensures causality, strong FIFO and travel time continuity, and that the MLI-type link travel time function is strictly monotone under the condition that the travel time of each vehicle on a link is greater than the free flow travel time on that link. Numerical examples are set up to illustrate the properties and accuracy of the three models.  相似文献   

12.
In this paper, a multi‐step ahead prediction algorithm of link travel speeds has been developed using a Kalman filtering technique in order to calculate a dynamic shortest path. The one‐step and the multi‐step ahead link travel time prediction models for the calculation of the dynamic shortest path have been applied to the directed test network that is composed of 16 nodes: 3 entrance nodes, 2 exit nodes and 11 internal nodes. Time‐varying traffic conditions such as flows and travel time data for the test network have been generated using the CORSIM model. The results show that the multi‐step ahead algorithm is compared more favorably for searching the dynamic shortest time path than the other algorithm.  相似文献   

13.
Travel time functions specify the relationship between the travel time on a road and the volume of traffic on the road. Until recently, the parameters of travel time functions were rarely estimated in practice; however, a compelling case can be made for the empirical examination of these functions. This paper reviews, and qualitatively evaluates, a range of options for developing a set of travel time functions. A hierarchy of travel time functions is defined based on four levels of network detail: area, corridor, route and link. This hierarchy is illustrated by considering the development of travel time functions for Adelaide. Alternative sources of data for estimating travel time functions are identified.

In general, the costs and benefits increase as the travel time functions are estimated at finer levels of network detail. The costs of developing travel time functions include data acquisition costs and analysis costs. The benefits include the potential for reducing prediction errors, the degree of application flexibility and the policy sensitivity of the travel time functions.  相似文献   

14.

This paper presents an artificial neural network (ANN) based method for estimating route travel times between individual locations in an urban traffic network. Fast and accurate estimation of route travel times is required by the vehicle routing and scheduling process involved in many fleet vehicle operation systems such as dial‐a‐ride paratransit, school bus, and private delivery services. The methodology developed in this paper assumes that route travel times are time‐dependent and stochastic and their means and standard deviations need to be estimated. Three feed‐forward neural networks are developed to model the travel time behaviour during different time periods of the day‐the AM peak, the PM peak, and the off‐peak. These models are subsequently trained and tested using data simulated on the road network for the City of Edmonton, Alberta. A comparison of the ANN model with a traditional distance‐based model and a shortest path algorithm is then presented. The practical implication of the ANN method is subsequently demonstrated within a dial‐a‐ride paratransit vehicle routing and scheduling problem. The computational results show that the ANN‐based route travel time estimation model is appropriate, with respect to accuracy and speed, for use in real applications.  相似文献   

15.
西部地区公路地质灾害监测预报技术研究   总被引:1,自引:0,他引:1  
“西部地区公路地质灾害监测预报技术研究”项目针对西部地区公路地质灾害危险性区划、滑坡、崩塌与泥石流监测预报及地质灾害安全管理等关键技术问题进行深入系统研究,形成了公路滑坡、崩塌与泥石流监测预报成套技术,建立了公路地质灾害数据标准,构建了“基于GIS的公路地质灾害监测预报信息系统”平台,实现了公路地质灾害监测实时分析处理和动态预报,为地质灾害综合管理提供技术支撑。  相似文献   

16.
In the last decade, a broad array of disciplines has shown a general interest in enhancing discrete choice models by considering the incorporation of psychological factors affecting decision making. This paper provides insight into the comprehension of the determinants of route choice behavior by proposing and estimating a hybrid model that integrates latent variable and route choice models. Data contain information about latent variable indicators and chosen routes of travelers driving regularly from home to work in an urban network. Choice sets include alternative routes generated with a branch and bound algorithm. A hybrid model consists of measurement equations, which relate latent variables to measurement indicators and utilities to choice indicators, and structural equations, which link travelers’ observable characteristics to latent variables and explanatory variables to utilities. Estimation results illustrate that considering latent variables (i.e., memory, habit, familiarity, spatial ability, time saving skills) alongside traditional variables (e.g., travel time, distance, congestion level) enriches the comprehension of route choice behavior.  相似文献   

17.
In this paper, we proposed an evaluation method of exclusive bus lanes (EBLs) in a bi-modal degradable road network with car and bus transit modes. Link travel time with and without EBLs for two modes is analyzed with link stochastic degradation. Furthermore, route general travel costs are formulated with the uncertainty of link travel time for both modes and the uncertainty of waiting time at a bus stop and in-vehicle congestion costs for the bus mode. The uncertainty of bus waiting time is considered to be relevant to the degradation of the front links of the bus line. A bi-modal user equilibrium model incorporating travelers’ risk adverse behavior is proposed for evaluating EBLs. Finally, two numerical examples are used to illustrate how the road degradation level, travelers’ risk aversion level and the front link’s correlation level with the uncertainty of the bus waiting time affect the results of the user equilibrium model with and without EBLs and how the road degradation level affects the optimal EBLs setting scheme. A paradox of EBLs setting is also illustrated where adding one exclusive bus lane may decrease share of bus.  相似文献   

18.
With the help of automated fare collection systems in the metro network, more and more smart card (SC) data has been widely accumulated, which includes abundant information (i.e., Big Data). However, its inability to record passengers’ transfer information and factors affecting passengers’ travel behaviors (e.g., socio-demographics) limits further potential applications. In contrast, self-reported Revealed Preference (RP) data can be collected via questionnaire surveys to include those factors; however, its sample size is usually very small in comparison to SC data. The purpose of this study is to propose a new set of approaches of estimating metro passengers’ path choices by combining self-reported RP and SC data. These approaches have the following attractive features. The most important feature is to jointly estimate these two data sets based on a nested model structure with a balance parameter by accommodating different scales of the two data sets. The second feature is that a path choice model is built to incorporate stochastic travel time budget and latent individual risk-averse attitude toward travel time variations, where the former is derived from the latter and the latter is further represented based on a latent variable model with observed individual socio-demographics. The third feature is that an algorithm of combining the two types of data is developed by integrating an Expectation-Maximization algorithm and a nested logit model estimation method. The above-proposed approaches are examined based on data from Guangzhou Metro, China. The results show the superiority of combined data over single data source in terms of both estimation and forecasting performance.  相似文献   

19.
Global Positioning System and other location-based services record vehicles’ spatial locations at discrete time stamps. Considering these recorded locations in space with given specific time stamps, this paper proposes a novel time-dependent graph model to estimate their likely space–time paths and their uncertainties within a transportation network. The proposed model adopts theories in time geography and produces the feasible network–time paths, the expected link travel times and dwell times at possible intermediate stops. A dynamic programming algorithm implements the model for both offline and real-time applications. To estimate the uncertainty, this paper also develops a method based on the potential path area for all feasible network–time paths. This paper uses a set of real-world trajectory data to illustrate the proposed model, prove the accuracy of estimated results and demonstrate the computational efficiency of the estimation algorithm.  相似文献   

20.
This study deals with the sensitivity analysis of an equilibrium transportation networks using genetic algorithm approach and uses the bi‐level iterative sensitivity algorithm. Therefore, integrated Genetic Algorithm‐TRANSYT and Path Flow Estimator (GATPFE) is developed for signalized road networks for various level of perceived travel time in order to test the sensitivity of perceived travel time error in an urban stochastic road networks. Level of information provided to drivers correspondingly affects the signal timing parameters and hence the Stochastic User Equilibrium (SUE) link flows. When the information on road system is increased, the road users try to avoid conflicting links. Therefore, the stochastic equilibrium assignment concept tends to be user equilibrium. The GATPFE is used to solve the bi‐level problem, where the Area Traffic Control (ATC) is the upper‐level and the SUE assignment is the lower‐level. The GATPFE is tested for six‐junction network taken from literature. The results show that the integrated GATPFE can be applied to carry out sensitivity analysis at the equilibrium network design problems for various level of information and it simultaneously optimize the signal timings (i.e. network common cycle time, signal stage and offsets between junctions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号