首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

2.
This paper uses observations from before and during the Stockkholm congestion charging trial in order to validate and improve a transportation model for Stockholm. The model overestimates the impact of the charges on traffic volumes while at the same time it substantially underestimates the impact on travel times. These forecast errors lead to considerable underestimation of economic benefits which are dominated by travel time savings. The source of error lies in the static assignment that is used in the model. Making the volume-delay functions (VDFs) steeper only marginally improves the quality of forecast but strongly impacts the result of benefit calculations. We therefore conclude that the dynamic assignment is crucial for an informed decision on introducing measures aimed at relieving congestion. However, in the absence of such a calibrated dynamic model for a city, we recommend that at least a sensitivity analysis with respect to the slope of VDFs is performed.  相似文献   

3.
Congestion pricing is one of the widely contemplated methods to manage traffic congestion. The purpose of congestion pricing is to manage traffic demand generation and supply allocation by charging fees (i.e., tolling) for the use of certain roads in order to distribute traffic demand more evenly over time and space. This study presents a framework for large-scale variable congestion pricing policy determination and evaluation. The proposed framework integrates departure time choice and route choice models within a regional dynamic traffic assignment (DTA) simulation environment. The framework addresses the impact of tolling on: (1) road traffic congestion (supply side), and (2) travelers’ choice dimensions including departure time and route choices (demand side). The framework is applied to a simulation-based case study of tolling a major freeway in Toronto while capturing the regional effects across the Greater Toronto Area (GTA). The models are developed and calibrated using regional household travel survey data that reflect the heterogeneity of travelers’ attributes. The DTA model is calibrated using actual traffic counts from the Ontario Ministry of Transportation and the City of Toronto. The case study examined two tolling scenarios: flat and variable tolling. The results indicate that: (1) more benefits are attained from variable pricing, that mirrors temporal congestion patterns, due to departure time rescheduling as opposed to predominantly re-routing only in the case of flat tolling, (2) widespread spatial and temporal re-distributions of traffic demand are observed across the regional network in response to tolling a significant, yet relatively short, expressway serving Downtown Toronto, and (3) flat tolling causes major and counterproductive rerouting patterns during peak hours, which was observed to block access to the tolled facility itself.  相似文献   

4.
This paper reviews and compares the performance of two dynamic transportation models – METROPOLIS and SILVESTER – which are used to predict the impacts of congestion charging for Stockholm. Both are mesoscopic dynamic models treating accumulation and dissipation of traffic queues, route choice, modal split and departure time choice. The models are calibrated independently for the baseline situation without charges and applied to forecast the effects of congestion charging. The results obtained from the two models are mutually compared and validated against the actual outcome of the Stockholm congestion charging scheme. Both models successfully predict the outcomes of the congestion charging trial at both aggregate and disaggregate levels. Results of welfare analysis, however, differ substantially due to differences in model specification.  相似文献   

5.
A driver is one of the main components in a transportation system that influences the effectiveness of any active demand management (ADM) strategies. As such, the understanding on driver behavior and their travel choice is crucial to ensure the successful implementation of ADM strategies in alleviating traffic congestion, especially in city centres. This study aims to investigate the impact of traffic information dissemination via traffic images on driver travel choice and decision. A relationship of driver travel choice with respect to their perceived congestion level is developed by an integrated framework of genetic algorithm–fuzzy logic, being a new attempt in driver behavior modeling. Results show that drivers consider changing their travel choice when the perceived congestion level is medium, in which changing departure time and diverting to alternative roads are two popular choices. If traffic congestion escalates further, drivers are likely to cancel their trip. Shifting to public transport system is the least likely choice for drivers in an auto-dependent city. These findings are important and useful to engineers as they are required to fully understand driver (user) sensitivity to traffic conditions so that relevant active travel demand management strategies could be implemented successfully. In addition, engineers could use the relationships established in this study to predict drivers’ response under various traffic conditions when carrying out modeling and impact studies.  相似文献   

6.
It is widely acknowledged that cyclists choose their route differently to drivers of private vehicles. The route choice decision of commuter drivers is often modelled with one objective, to reduce their generalised travel cost, which is a monetary value representing the combined travel time and vehicle operating cost. Commuter cyclists, on the other hand, usually have multiple incommensurable objectives when choosing their route: the travel time and the suitability of a route. By suitability we mean non-subjective factors that characterise the suitability of a route for cycling, including safety, traffic volumes, traffic speeds, presence of bicycle lanes, whether the terrain is flat or hilly, etc. While these incommensurable objectives are difficult to be combined into a single objective, it is also important to take into account that each individual cyclist may prioritise differently between travel time and suitability when they choose a route.This paper proposes a novel model to determine the route choice set of commuter cyclists by formulating a bi-objective routing problem. The two objectives considered are travel time and suitability of a route for cycling. Rather than determining a single route for a cyclist, we determine a choice set of optimal alternative routes (efficient routes) from which a cyclist may select one according to their personal preference depending on their perception of travel time versus other route choice criteria considered in the suitability index. This method is then implemented in a case study in Auckland, New Zealand.The study provides a starting point for the trip assignment of cyclists, and with further research, the bi-objective routing model developed can be applied to create a complete travel demand forecast model for cycle trips. We also suggest the application of the developed methodology as an algorithm in an interactive route finder to suggest efficient route choices at different levels of suitability to cyclists and potential cyclists.  相似文献   

7.
Interest in vehicle automation has been growing in recent years, especially with the very visible Google car project. Although full automation is not yet a reality there has been significant research on the impacts of self-driving vehicles on traffic flows, mainly on interurban roads. However, little attention has been given to what could happen to urban mobility when all vehicles are automated. In this paper we propose a new method to study how replacing privately owned conventional vehicles with automated ones affects traffic delays and parking demand in a city. The model solves what we designate as the User Optimum Privately Owned Automated Vehicles Assignment Problem (UO-POAVAP), which dynamically assigns family trips in their automated vehicles in an urban road network from a user equilibrium perspective where, in equilibrium, households with similar trips should have similar transport costs. Automation allows a vehicle to travel without passengers to satisfy multiple household trips and, if needed, to park itself in any of the network nodes to benefit from lower parking charges. Nonetheless, the empty trips can also represent added congestion in the network. The model was applied to a case study based on the city of Delft, the Netherlands. Several experiments were done, comparing scenarios where parking policies and value of travel time (VTT) are changed. The model shows good equilibrium convergence with a small difference between the general costs of traveling for similar families. We were able to conclude that vehicle automation reduces generalized transport costs, satisfies more trips by car and is associated with increased traffic congestion because empty vehicles have to be relocated. It is possible for a city to charge for all street parking and create free central parking lots that will keep total transport costs the same, or reduce them. However, this will add to congestion as traffic competes to access those central nodes. In a scenario where a lower VTT is experienced by the travelers, because of the added comfort of vehicle automation, the car mode share increases. Nevertheless this may help to reduce traffic congestion because some vehicles will reroute to satisfy trips which previously were not cost efficient to be done by car. Placing the free parking in the outskirts is less attractive due to the extra kilometers but with a lower VTT the same private vehicle demand would be attended with the advantage of freeing space in the city center.  相似文献   

8.
This paper examines the effect of cordon pricing based on an urban spatial model of a non-monocentric city where trips may occur between any pair of locations in the city. The model describes the spatial distribution of trip demand and traffic congestion under alternative pricing schemes. We evaluate the efficiency of resource allocation by comparing three schemes: no-toll equilibrium, first-best optimum, and optimal cordon pricing. Optimal cordon pricing is defined as a combination of cordon location and toll level that maximizes the social surplus in a city. Simulations show that cordon pricing is not always effective for congestion management: cordon pricing tends to be effective as the urban structure is more monocentric.  相似文献   

9.
A dynamic traffic assignment (DTA) model typically consists of a traffic performance model and a route choice model. The traffic performance model describes how traffic propagates (over time) along routes connecting origin-destination (OD) pairs, examples being the cell transmission model, the vertical queueing model and the travel time model. This is implemented in a dynamic network loading (DNL) algorithm, which uses the given route inflows to compute the link inflows (and hence link costs), which are then used to compute the route travel times (and hence route costs). A route swap process specifies the route inflows for tomorrow (at the next iteration) based on the route inflows today (at the current iteration). A dynamic user equilibrium (DUE), where each traveller on the network cannot reduce his or her cost of travel by switching to another route, can be sought by iterating between the DNL algorithm and the route swap process. The route swap process itself takes up very little computational time (although route set generation can be very computationally intensive for large networks). However, the choice of route swap process dramatically affects convergence and the speed of convergence. The paper details several route swap processes and considers whether they lead to a convergent system, assuming that the route cost vector is a monotone function of the route inflow vector.  相似文献   

10.
Recent methodological advances in discrete choice analysis in combination with certain stated choice experiments have allowed researchers to check empirically the identification of the distribution of latent variables such as the value of travel time (VTT). Lack of identification is likely to be common and the consequences are severe. E.g., the Danish value of time study found the 15% right tail of the VTT distribution to be unidentified, making it impossible to estimate the mean VTT without resorting to strong assumptions with equally strong impact on the resulting estimate. This paper analyses data generated from a similar choice experiment undertaken in Sweden during 2007-2008 in which the range of trade-off values between time and money was significantly increased relative to the Danish experiment. The results show that this change allowed empirical identification of effectively the entire VTT distribution. In addition to informing the design of future choice experiments, the results are also of interest as a validity test of the stated choice methodology. Failure in identifying the right tail of the VTT would have made it difficult to maintain that respondents’ behaviour is consistent with utility maximisation in the sense intended by the experimenter.  相似文献   

11.
ABSTRACT

The quality of traffic information has become one of the most important factors that can affect the distribution of urban and highway traffic flow by changing the travel route, transportation mode, and travel time of travelers and trips. Past research has revealed traveler behavior when traffic information is provided. This paper summarizes the related study achievements from a survey conducted in the Beijing area with a specially designed questionnaire considering traffic conditions and the provision of traffic information services. With the survey data, a Logit model is estimated, and the results indicate that travel time can be considered the most significant factor that affects highway travel mode choice between private vehicles and public transit, whereas trip purpose is the least significant factor for private vehicle usage for both urban and highway travel.  相似文献   

12.
This paper addresses the equilibrium traffic assignment problem involving battery electric vehicles (BEVs) with flow-dependent electricity consumption. Due to the limited driving range and the costly/time-consuming recharging process required by current BEVs, as well as the scarce availability of battery charging/swapping stations, BEV drivers usually experience fear that their batteries may run out of power en route. Therefore, when choosing routes, BEV drivers not only try to minimize their travel costs, but also have to consider the feasibility of their routes. Moreover, considering the potential impact of traffic congestion on the electricity consumption of BEVs, the feasibility of routes may be determined endogenously rather than exogenously. A set of user equilibrium (UE) conditions from the literature is first presented to describe the route choice behaviors of BEV drivers considering flow-dependent electricity consumption. The UE conditions are then formulated as a nonlinear complementarity model. The model is further formulated as a variational inequality (VI) model and is solved using an iterative solution procedure. Numerical examples are provided to demonstrate the proposed models and solution algorithms. Discussions of how to evaluate and improve the system performance with non-unique link flow distribution are offered. A robust congestion pricing model is formulated to obtain a pricing scheme that minimizes the system travel cost under the worst-case tolled flow distribution. Finally, a further extension of the mathematical formulation for the UE conditions is provided.  相似文献   

13.
Travel time is an effective measure of roadway traffic conditions. The provision of accurate travel time information enables travelers to make smart decisions about departure time, route choice and congestion avoidance. Based on a vast amount of probe vehicle data, this study proposes a simple but efficient pattern-matching method for travel time forecasting. Unlike previous approaches that directly employ travel time as the input variable, the proposed approach resorts to matching large-scale spatiotemporal traffic patterns for multi-step travel time forecasting. Specifically, the Gray-Level Co-occurrence Matrix (GLCM) is first employed to extract spatiotemporal traffic features. The Normalized Squared Differences (NSD) between the GLCMs of current and historical datasets serve as a basis for distance measurements of similar traffic patterns. Then, a screening process with a time constraint window is implemented for the selection of the best-matched candidates. Finally, future travel times are forecasted as a negative exponential weighted combination of each candidate’s experienced travel time for a given departure. The proposed approach is tested on Ring 2, which is a 32km urban expressway in Beijing, China. The intermediate procedures of the methodology are visualized by providing an in-depth quantitative analysis on the speed pattern matching and examples of matched speed contour plots. The prediction results confirm the desirable performance of the proposed approach and its robustness and effectiveness in various traffic conditions.  相似文献   

14.
Travel time is an important performance measure for transportation systems, and dissemination of travel time information can help travelers make reliable travel decisions such as route choice or departure time. Since the traffic data collected in real time reflects the past or current conditions on the roadway, a predictive travel time methodology should be used to obtain the information to be disseminated. However, an important part of the literature either uses instantaneous travel time assumption, and sums the travel time of roadway segments at the starting time of the trip, or uses statistical forecasting algorithms to predict the future travel time. This study benefits from the available traffic flow fundamentals (e.g. shockwave analysis and bottleneck identification), and makes use of both historical and real time traffic information to provide travel time prediction. The methodological framework of this approach sequentially includes a bottleneck identification algorithm, clustering of traffic data in traffic regimes with similar characteristics, development of stochastic congestion maps for clustered data and an online congestion search algorithm, which combines historical data analysis and real-time data to predict experienced travel times at the starting time of the trip. The experimental results based on the loop detector data on Californian freeways indicate that the proposed method provides promising travel time predictions under varying traffic conditions.  相似文献   

15.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

16.
Day-to-day travel time variability plays a significant role in travel time reliability. Nowadays, travelers not only seek to minimize their travel time on average, but also value its variation. The variation in the mean and the variance of travel time (across days, for the same departure time) has not been thoroughly investigated. A temporary decrease in capacity (e.g. congestion caused by an active bottleneck) leads to a quite significant difference in the variance of travel time for congestion onset and offset periods. This phenomenon results in hysteresis loops where the departure time periods in congestion offset exhibit a higher travel time variance than the ones in congestion onset with the same mean travel time. The aim of this paper is to identify empirical implications that yield to the hysteresis phenomenon in day-to-day travel times. First, empirical hysteresis loop observations are provided from two different freeway sites. Second, we investigate the potential link with the hysteresis observed in traffic networks on macroscopic fundamental diagram (MFD). Third, we build a piecewise linear function that models the evolution of travel time within the day. This allows us to decompose the problem into its components, e.g. start time of congestion, peak travel time, etc. These components, along with their probability distribution functions, are employed in a Monte Carlo simulation model to investigate their partial effects on the existence of hysteresis. Correlation among critical variables is the most influential factor in this phenomenon, which should be further investigated regarding traffic flow and traffic equilibrium principles.  相似文献   

17.
In this study, to incorporate realistic discrete stochastic capacity distribution over a large number of sampling days or scenarios (say 30–100 days), we propose a multi-scenario based optimization model with different types of traveler knowledge in an advanced traveler information provision environment. The proposed method categorizes commuters into two classes: (1) those with access to perfect traffic information every day, and (2) those with knowledge of the expected traffic conditions (and related reliability measure) across a large number of different sampling days. Using a gap function framework or describing the mixed user equilibrium under different information availability over a long-term steady state, a nonlinear programming model is formulated to describe the route choice behavior of the perfect information (PI) and expected travel time (ETT) user classes under stochastic day-dependent travel time. Driven by a computationally efficient algorithm suitable for large-scale networks, the model was implemented in a standard optimization solver and an open-source simulation package and further applied to medium-scale networks to examine the effectiveness of dynamic traveler information under realistic stochastic capacity conditions.  相似文献   

18.
Advanced Traveler Information Systems (ATIS) provide travelers with real time traffic information to optimize their travel choices. The objective of this paper is to model drivers' diversion from their normal routes in the provision of ATIS. Five different scenarios of traffic information are used. Generalized Estimating Equations (GEE) framework with repeated observations and binomial probit link function is introduced and implemented. GEE with four different correlation structures including the independent case are developed and compared with each other and with regular Maximum Likelihood Estimation (MLE). A travel simulator was used. Sixty-five subjects have traveled 10 simulated trial days each on a 40-link realistic network with real historical congestion levels. The results showed that providing traffic information increases the probability of drivers' diversion from their normal routes. Adding advice to the pre-trip and/or en-route information encourages drivers to divert. Providing en-route in addition to the pre-trip information with or without advice increases the diversion probability. High travel time on the normal route and less travel time on the diverted route increase the probability of diversion. High-educated drivers are less likely to divert. Expressway users are more likely to divert from their normal routes under ATIS. Drivers' familiarity with the device that provides the information and high number of traffic signals on the normal route increase the diversion probability.  相似文献   

19.
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method.  相似文献   

20.
This paper presents a dynamic vehicle routing and scheduling model that incorporates real time information using variable travel times. Dynamic traffic simulation was used to update travel times. The model was applied to a test road network. Results indicated that the total cost decreased by implementing the dynamic vehicle routing and scheduling model with the real time information based on variable travel times compared with that of the forecast model. As well, in many cases total running times of vehicles were also decreased. Therefore, the dynamic vehicle routing and scheduling model will be beneficial for both carriers in reducing total costs and society at large by alleviating traffic congestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号