首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Ninety-two box cores collected during 2004–2006 from an area of ~ 3000 km2 off the Gaoping (formerly spelled Kaoping) River, SW Taiwan, were analyzed for fallout radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation rates and processes, and for the calculation of a sediment budget. The study area is located at an active collision margin with a narrow shelf and a submarine canyon extending essentially into the river's mouth. The results indicate fairly constant hemipelagic sedimentation in much of the open margin and for most of the time except in the inner shelf and along the axis of the canyon where sediment transport is more dynamic and is controlled by tidal current and wave activities constantly, and by fluvial floods or gravity-driven flows episodically. Sedimentation rates in the study area derived from 210Pb and constrained by 137Cs vary from 0.04 to 1.5 cm/yr, with the highest rates (> 1 cm/yr) flanking the Gaoping canyon over the upper slope (200–600 m) and the lowest rates (< 0.1 cm/yr) in the distal basin beyond the continental slope. The depocenter delineated from 210Pb-based sedimentation rates overlaps with the area covered by a flood layer resulting from super-typhoon Haitang in July 2005. Such correspondence supports the notion that the processes operating on event timescale have bearing on the formation of the sediment strata over centennial or longer timescales.From the distribution of sedimentation rates, sediment deposited in the study area annually is estimated to be 6.6 Mton/yr, accounting for less than 20% of Gaoping River's sediment load. The calculated budget, coupled with the presence of the short-lived 7Be and non-steady-state distribution of low levels of 210Pb in sediments along the canyon floor, suggests rapid transport of sediment from Gaoping River's mountainous watershed (the source) via the Gaoping (Kaoping) Submarine Canyon and adjacent channels (as the conduit and temporary sink) to the abyssal plain and the Manila Trench in the South China Sea (the ultimate sink).  相似文献   

2.
The fluctuations of catches of the deep-sea shrimp Aristeus antennatus (Risso, 1816) were analysed in the 6 ports of Catalonia where production is concentrated, based on monthly landings from 1988 to 2004. The 6 selected ports produced 300 t of red shrimp in 2004, or 80% of the total production in Catalonia. The series for each port showed clear interannual variability, with peaks of production in the early 1990s and more recently from 2001 to 2003. The time periods of the monthly data series, estimated by frequency analysis based on Fourier transform, varied around 7–8 years in the four central ports and 12–13 years in the two northern ports. Additionally, the different curves were not in phase: even in nearby ports, the maximum production is observed in different years. Since the North Atlantic Oscillation (NAO) index is an excellent proxy for long-term series of environmental variables, we aimed to explore relationships between the fluctuation of the NAO index and A. antennatus landings in the Catalan Sea. The correlation between the mean annual NAO index and the annual catches in each port was positive and significant with some time lags (from 1 to 3 years). The existence of clear patterns linking the NAO with marine ecological processes has been demonstrated in many studies, but the underlying ecological mechanisms are far from being well understood. The variations in environmental parameters linked to the NAO may act on biological organisms at different levels (individual, population) through physiology (metabolic and reproductive processes) or through trophic relationships, including ecological cascade effects. We propose that NAO-induced environmental variability may enhance food supply to A. antennatus and hence strengthen the reproductive potential of particular year classes, which result in increased catches 1 to 3 years later, although other possible effects of environmental variability on the population dynamics of this species are worth investigating.  相似文献   

3.
The river–sea system consisting of the Gaoping (new spelling according to the latest government's directive, formerly spelled Kaoping) River (KPR), shelf, and Submarine Canyon (KPRSC) located off southern Taiwan is an ideal natural laboratory to study the source, pathway, transport, and fate of terrestrial substances. In 2004 during the flood season of the KPR, a system-wide comprehensive field experiment was conducted to investigate particle dynamics from a source-to-sink perspective in the KPRSC with the emphasis on the effect of particle size on the transport, settling, and sedimentation along the pathway. This paper reports the findings from (1) two sediment trap moorings each configured with a Technicap PPS 3/3 sediment trap, and an acoustic current meter (Aquadopp); (2) concurrent hydrographic profiling and water sampling was conducted over 8 h next to the sediment trap moorings; and (3) box-coring in the head region of the submarine canyon near the mooring sites. Particle samples from sediment traps were analyzed for mass fluxes, grain-size composition, total organic carbon (TOC) and nitrogen (TN), organic matter (OM), carbonate, biogenic opal, polycyclic aromatic hydrocarbon (PAH), lithogenic silica and aluminum, and foraminiferal abundance. Samples from box cores were analyzed for grain-size distribution, TOC, particulate organic matter (POM), carbonate, biogenic opal, water content, and 210Pbex. Water samples were filtered through 500, 250, 63, 10 µm sieves and 0.4 µm filter for the suspended sediment concentration of different size-classes.Results show that the river and shelf do not supply all the suspended particles near the canyon floor. The estimated mass flux near the canyon floor exceeds 800 g/m2/day, whose values are 2–7 times higher than those at the upper rim of the canyon. Most of the suspended particles in the canyon are fine-grained (finer than medium silt) lithogenic sediments whose percentages are 90.2% at the upper rim and 93.6% in the deeper part of the canyon.As suspended particles settle through the canyon, their size-composition shows a downward fining trend. The average percentage of clay-to-fine-silt particles (0.4–10 µm) in the water samples increases from 22.7% above the upper rim of the canyon to 56.0% near the bottom of the canyon. Conversely, the average percentage of the sand-sized (> 63 µm) suspended particles decreases downward from 32.0% above the canyon to 12.0% in the deeper part of the canyon. Correspondingly, the substrate of the canyon is composed largely of hemipelagic lithogenic mud. Parallel to this downward fining trend is the downward decrease of concentrations of suspended nonlithogenic substances such as TOC and PAH, despite of their affinity to fine-grained particles.On the surface of the canyon, down-core variables (grain size, 210Pbex activity, TOC, water content) near the head region of the canyon show post-depositional disturbances such as hyperpycnite and turbiditic deposits. These deposits point to the occurrences of erosion and deposition related to high-density flows such as turbidity currents, which might be an important process in submarine canyon sedimentation.  相似文献   

4.
Within the SCAR's international EASIZ programme, as part of the benthic–pelagic coupling experiment, grain size and organic matter contents in marine surface sediment were measured. Samples were taken during the austral autumn of 2000 from 3 regions in the eastern Weddell Sea: Kapp Norvegia, Four Seasons Bank, and Austasen.In general, sediments were fine sand with a grain size fraction < 200 μm representing more than 40% of the total weight. The sediments from Four Seasons Bank (64 to 107 m depth) were coarser than those from Austasen and Kapp Norvegia (209 to 480 m depth), presumably due to winnowing of fine sediment at shallow depths. Organic carbon (OC) content ranged from 0.25% to 1.2% and constituted 10% to 97% of the total carbon. The samples from Kapp Norvegia presented the highest OC values. Overall, protein (PRT), lipid (LPD), and carbohydrate (CHO) contents were similar to those in sediment from cold regions (e.g., the North Atlantic and the Ross Sea) but higher than those in sediment from other Antarctic and more septentrional regions (e.g., the Ross Sea and the Mediterranean). The difference within the Antarctic is explained through the local conditions in Terra Nova Bay and Kapp Norvegia. In the Antarctic, PRT and LPD carbon were the main contributors to the biopolymeric carbon (BPC). In the eastern Weddell Sea shelf, the BPC accounted for more than 90% of the OC in most of the samples. More than 82% of the total PRT, LPD, and CHO were present in the fraction < 200 μm. This work remarks the existence of sediments with a high nutritional value persistent several weeks after the spring–summer pulse of fresh organic matter. It is also highlighted the high potential availability of these sediments (due to its grain size) for the benthic communities inhabiting this high-latitude continental shelf.  相似文献   

5.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

6.
Methane release and coastal environment in the East Siberian Arctic shelf   总被引:1,自引:0,他引:1  
In this paper we present 2 years of data obtained during the late summer period (September 2003 and September 2004) for the East Siberian Arctic shelf (ESAS). According to our data, the surface layer of shelf water was supersaturated up to 2500% relative to the present average atmospheric methane content of 1.85 ppm, pointing to the rivers as a strong source of dissolved methane which comes from watersheds which are underlain with permafrost. Anomalously high concentrations (up to 154 nM or 4400% supersaturation) of dissolved methane in the bottom layer of shelf water at a few sites suggest that the bottom layer is somehow affected by near-bottom sources. The net flux of methane from this area of the East Siberian Arctic shelf can reach up to 13.7 × 104 g CH4 km− 2 from plume areas during the period of ice free water, and thus is in the upper range of the estimated global marine methane release. Ongoing environmental change might affect the methane marine cycle since significant changes in the thermal regime of bottom sediments within a few sites were registered. Correlation between calculated methane storage within the water column and both integrated salinity values (r = 0.61) and integrated values of dissolved inorganic carbon (DIC) (r = 0.62) suggest that higher concentrations of dissolved methane were mostly derived from the marine environment, likely due to in-situ production or release from decaying submarine gas hydrates deposits. The calculated late summer potential methane emissions tend to vary from year to year, reflecting most likely the effect of changing hydrological and meteorological conditions (temperature, wind) on the ESAS rather than riverine export of dissolved methane. We point out additional sources of methane in this region such as submarine taliks, ice complex retreat, submarine permafrost itself and decaying gas hydrates deposits.  相似文献   

7.
Microstructure profiling measurements at two locations in the Yellow Sea (a deeper central basin and a local shelf break) were analyzed focusing on tidal and internal-wave induced turbulence near the bottom and in the pycnocline. A classical three-layer density structure consisting of weakly stratified surface and bottom boundary layers and a narrow sharp pycnocline is developed by the end of warm season. Turbulence in the surface layer was not influenced by the tidal forcing but by the diurnal cycle of buoyancy flux and wind forcing at the sea surface. The enhanced dissipation and diffusivity generated by the shear stress at the seafloor was found in the water interior at heights 10–15 m above the bottom with a phase shift of ~ 5–6 m/h. No internal waves, turbulence, or mixing were detected in the pycnocline in the central basin, in contrast to the pycnocline near the local shelf break wherein internal waves of various frequencies were observed all the time. The thickness of the surface layer near the local shelf break slightly exceeded that of the bottom layer (20 vs. 18 m). A 5–6 m high vertical displacement of the pycnocline, which emerged during the low tide, was arguably caused by the passage of an internal soliton of elevation. During this episode, the gradient Richardson number decreased below 0.25 due to enhanced vertical shear, leading to local generation of turbulence with dissipation rates exceeding the background level by an order of magnitude.  相似文献   

8.
European hake (Merluccius merluccius) female size at maturity is estimated on an annual basis for Bay of Biscay and Galician coast, which are parts of the distribution of the Northern and Southern stocks, respectively. Clear trends in this reproductive parameter are observed along the time series and the potential factors affecting these trends have been investigated. Total biomass, different indexes of SSB, age diversity index, fishing mortality at age, NAO winter index, upwelling index and temperature were included in multiple regressions models to assess the relative importance of each of them on shifts in size at maturity.Bay of Biscay and Galician coast hake have followed different evolution in patterns of changes in size at maturity. In Bay of Biscay, a steadily decline of 15 cm has been observed from 1987 to 2004, which is well predicted by fishing mortality and age diversity, but also the environment may have played an important role. However, on the Galician coast a drastic decline of 16 cm from 1980 to 1988 was followed by a rapid increase in size at maturity during the next 10 years to original values and a stable period in the last 6 years. Decreasing biomass may explain the decline in size at maturity in the first period. However, total biomass and spawning biomass declined even during the period when size at maturity increased, which is contrary to compensatory theory. Shifts in environmental regime, NAO and upwelling, may have contributed to a decelerated growth during this period that might explain the later maturation.  相似文献   

9.
Recent sedimentary study of the shelf of the Basque country   总被引:2,自引:1,他引:1  
The Northern Iberian margin of the Spanish Basque country (provinces of Gipuzkoa and Viscaia) is characterized by a narrow continental platform, which receives inputs of riverine particulate matter from the numerous riverine systems located within the Basque country. This particulate matter is subsequently deposited within the Bay of Biscay, and Gouf de Capbreton [Frouin, R., Fiuza, A.F.G., Ambar, I., Boyd, T.J., 1990. Observations of a poleward surface current off the coasts of Portugal and Spain during winter. Journal of Geophysical Research 95 (C1), 679–691]. The main goal of this study is to establish a map of the surface sediment distribution of the Basque continental shelf and more specifically to map the muddy patch located at the eastern side of that continental shelf.Three oceanographic cruises were conducted in 2003 and 2004. From these campaigns 340 surface samples, 12 short cores and 3 gravity cores have been collected over the mid and outer shelf from depths ranging between 50 m and 150 m deep. 3 seismic profiles were obtained across the shelf mud patch using a Sparker device.Sediment grain-size analyses were performed by the classical physical method of sieving and use of settling columns. The POC (Particular Organic Carbon) amounts in sediment and water samples were determined using the Strickland and Parsons' method [Strickland, J.D.H., Parsons, T.R., 1972. Determination of particulate carbon. In : A practical handbook of seawater analysis. Fisheries ResearchBoard of Canada, Ottawa, pp. 207−211] as adapted by Etcheber [Etcheber, H., 1981. Comparaison des diverses méthodes d'évaluation des teneurs en matières en suspension et en carbone organique particulaire des eaux marines du plateau continental aquitain. Journal de Recherche Océanographique VI (2), 37−42]. Radioisotopic measurements (210Pbexc) were made using a semi-planar germanium detector coupled to a multichannel analyser. Radiographical analysis was performed with an X-ray equipment (SCOPIX®) coupled with a radioscopy instrumentation and processing unit.Firstly, a detailed sedimentological map of this shelf has been produced and secondly, geophysical surveys have precisely mapped the geometry of the main mud patch on the continental shelf. In the mud patch itself the rates of sedimentation are between 0.13 and 0.50 cm yr− 1. The maximum rate of sedimentation is located in the central mud patch, whereas the minimum rate of deposition occurs close to the rocky outcrops. These results seem to be in agreement with the estimation of the total thickness of the mud patch revealed by seismic profiles. The central part corresponds to the maximum thickness of 7 m.Interpretations of the associated oceanic current forcing factors (current direction, wave fetch and wind directional modes) relating to the identified sediment depositional zones are also undertaken.  相似文献   

10.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

11.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

12.
Sediment physical properties of the DYNAS study area   总被引:2,自引:0,他引:2  
Physical properties of the deposits in the DYNAS study area, the Mecklenburg Bay, were investigated using sediment echosounders and laboratory analysis were carried out on undisturbed short sediment cores. Wet bulk densities of about 1.2 g/cm3 for mud and up to 1.9 g/cm3 for silty sand were found in surface sediments of the Mecklenburg Bay. Sediment density–depth functions were approximated by logarithmic regression functions at different depth intervals. Sediment consolidation was studied by both (i) consolidation tests of sediment samples and (ii) from the void ratio–overburden pressure relation in natural sediments. Low shear strength values of 9–71 Pa were measured at the mud surface. Downcore, a depth gradient of about 14.5 Pa/cm was calculated. Sediments with high silt and sand contents are characterized by shear strength values of up to 3000 Pa. Published formulas derived from erosion studies were used to calculate the critical shear stress using wet bulk density and shear strength. The obtained results demonstrate clearly, that there is still a wide gap in knowledge about the relationships between erosion parameters and sediment physical properties.  相似文献   

13.
Surface and box-cored sediments were collected along the Gaoping (formerly spelled Kaoping) Estuary–Canyon system and analyzed for As and Hg contents and speciation, 210Pb-based sedimentation rates and various geochemical parameters to elucidate the mechanisms that control natural and anthropogenic inputs of As and Hg from the Gaoping (Kaoping) River (KPR). The contents of As and Hg in surface sediments ranged from 1.84 to 20.7 mg kg− 1 and from 0.07 to 2.15 mg kg− 1, respectively, in the estuary and canyon. The concentrations generally decreased from the lower river toward the mixing boundary and then increased toward the estuarine mouth, followed by a slight variation in the canyon. Both As and Hg concentrations correlated strongly with clay, total organic carbon (TOC), Al, Fe and Mn contents in estuarine sediments but not necessary the same cases for canyon surface sediments. The factor analysis of surface sediments shows that the first two factors, which account for 75.6% of the variance, may represent major roles of carriers (clay, Al and Fe–Mn oxides) and TOC in controlling As and Hg distributions, respectively. Accordingly, the spatial patterns of the enrichments of As (1.9–16.2) and Hg (1.8–30.8) with reference to the crust levels follow the individual element's distribution patterns, likely because of deposition variability following inputs from the river. The contents of mobile As and Hg correlated substantially with the contents of both metals that were extracted with 0.1 M HCl. In addition to the major pool in the residual fraction (65–87%), As was relatively abundant in Fe–Mn oxides/hydroxides, whereas Hg was abundant in the organic/sulfide fraction. The deposition and accumulation rates of As and Hg in the canyon clearly decreased as the depth of water increased. The depth distributions of both metals are likely controlled primarily by TOC and Fe–Mn oxides associated factors followed by a contribution from anthropogenic pollution. The metal pollution appears to have increased substantially around 1970, following the economic boom in Taiwan, suggesting that modern sediments in the Gaoping (Kaoping) Canyon were derived from the Gaoping (Kaoping) River (KPR).  相似文献   

14.
The Baltic Sea is one of many aquatic ecosystems that show long-term declines in dissolved silicate (DSi) concentrations due to anthropogenic alteration of the biogeochemical Si cycle. Reductions in DSi in aquatic ecosystems have been coupled to hydrological regulation reducing inputs, but also with eutrophication, although the relative significance of both processes remains unknown for the observed reductions in DSi concentrations. Here we combine present and historical data on water column DSi concentrations, together with estimates of present river DSi loads to the Baltic, the load prior to damming together with estimates of the long-term accumulation of BSi in sediments. In addition, a model has been used to evaluate the past, present and future state of the biogeochemical Si cycle in the Baltic Sea. The present day DSi load to the Baltic Sea is 855 ktons y− 1. Hydrological regulation and eutrophication of inland waters can account for a reduction of 420 ktons y− 1 less riverine DSi entering the Baltic Sea today. Using published data on basin-wide accumulation rates we estimate that 1074 ktons y− 1 of biogenic silica (BSi) is accumulating in the sediments, which is 36% higher than earlier estimates from the literature (791 ktons y− 1). The difference is largely due to the high reported sedimentation rates in the Bothnian Sea and the Bothnian Bay. Using river DSi loads and estimated BSi accumulation, our model was not able to estimate water column DSi concentrations as burial estimates exceeded DSi inputs. The model was then used to estimate the BSi burial from measured DSi concentrations and DSi load. The model estimate for the total burial of BSi in all three basins was 620 ktons y− 1, 74% less than estimated from sedimentation rates and sediment BSi concentrations. The model predicted 20% less BSi accumulation in the Baltic Proper and 10% less in the Bothnian Bay than estimated, but with significantly less BSi accumulation in the Bothnian Sea by a factor of 3. The model suggests there is an overestimation of basin-wide sedimentation rates in the Bothnian Bay and the Bothnian Sea. In the Baltic Proper, modelling shows that historical DSi concentrations were 2.6 times higher at the turn of the last century (ca. 1900) than at present. Although the DSi decrease has leveled out and at present there are only restricted areas of the Baltic Sea with limiting DSi concentrations, further declines in DSi concentrations will lead to widespread DSi limitation of diatoms with severe implications for the food web.  相似文献   

15.
16.
The Mackenzie River is the largest river on the North American side of the Arctic and its huge freshwater and sediment load impacts the Canadian Beaufort Shelf. Huge quantities of sediment and associated organic carbon are transported in the Mackenzie plume into the interior of the Arctic Ocean mainly during the freshet (May to September). Changing climate scenarios portend increased coastal erosion and resuspension that lead to altered river-shelf-slope particle budgets. We measured sedimentation rates, suspended particulate matter (SPM), particle size and settling rates during ice-free conditions in Kugmallit Bay (3–5 m depth). Additionally, measurements of erosion rate, critical shear stress, particle size distribution and resuspension threshold of bottom sediments were examined at four regionally contrasting sites (33–523 m depth) on the Canadian Beaufort Shelf using a new method for assessing sediment erosion. Wind induced resuspension was evidenced by a strong relationship between SPM and wind speed in Kugmallit Bay. Deployment of sediment traps showed decreasing sedimentation rates at sites along an inshore–offshore transect ranging from 5400 to 3700 g m− 2 day− 1. Particle settling rates and size distributions measured using a Perspex settling chamber showed strong relationships between equivalent spherical diameter (ESD) and particle settling rates (r= 0.91). Mean settling rates were 0.72 cm s− 1 with corresponding ESD values of 0.9 mm. Undisturbed sediment cores were exposed to shear stress in an attempt to compare differences in sediment stability across the shelf during September to October 2003. Shear was generated by vertically oscillating a perforated disc at controlled frequencies corresponding to calibrated shear velocity using a piston grid erosion device. Critical (Type I) erosion thresholds (u) varied between 1.1 and 1.3 cm s− 1 with no obvious differences in location. Sediments at the deepest site Amundsen Gulf displayed the highest erosion rates (22–54 g m− 2 min− 1) with resuspended particle sizes ranging from 100 to 930 µm for all sites. There was no indication of biotic influence on sediment stability, although our cores did not display a fluff layer of unconsolidated sediment. Concurrent studies in the delta and shelf region suggest the importance of a nepheloid layer which transports suspended particles to the slope. Continuous cycles of resuspension, deposition, and horizontal advection may intensify with reduction of sea ice in this region. Our measurements coupled with studies of circulation and cross-shelf exchange allow parameterization and modeling of particle dynamics and carbon fluxes under various climate change scenarios.  相似文献   

17.
Three drifters drogued at 65 m were launched on a transect on the Armorican shelf of the Bay of Biscay for 4 years. The experiments were conducted in autumn. They revealed a north-westward, poleward current over the 100 m isobath and a very weak eastward current over depths comprised between 120 and 150 m. A model was used to assess the role of residual tidal currents and wind-induced circulation. The results show that the former are quite weak and the latter do not explain the average velocity of over 10 cm s− 1. It is thought that this current is mainly driven by the density gradient induced by the breakdown of stratification. Hydrological data and satellite images from the period are discussed, in the light of this hypothesis.  相似文献   

18.
The shelf-slope front (SSF) is a continuous shelf-break front running from the Tail of the Grand Banks to Cape Hatteras, North Carolina, separating colder and less-saline continental shelf waters from warmer and more saline slope waters. Time series containing mean monthly SSF positions were produced along each of 26 longitude lines between 75° and 50°W by workers located at Bedford Institute of Oceanography by digitizing individual frontal charts and computing mean monthly latitudinal positions over a 29-year (1973–2001) period. After removing seasonal variability at each longitude, interannual variability (IAV) of the SSF position at each longitude was computed as the annual mean of all monthly SSF position anomalies for each year over the 29-year period. Despite some missing data, a longitude-time plot reveals alternating bands of offshore (late-1970s, late-1980s, late-1990s) and onshore (early-1980s, early-1990s, early-2000s) annual mean SSF anomaly values, exhibiting a period of approximately 10 years. Annual mean SSF anomaly amplitudes are largest in the east, with maxima of O (± 100 km) located east of 60° W for years when data are available. Empirical orthogonal function (EOF) modes 1–4 (accounting for > 90% of the variance) form a set of basis functions that describe the SSF anomaly data and allow reconstruction of the entire data set since missing data are relatively few (14%). A complex empirical orthogonal function (CEOF) analysis using the “reconstructed” data reveals a wavelength scale of approximately 20° of longitude, a distance nearly equal to the entire study domain, along with steady, westward phase propagation of SSF anomalies over approximately the same distance. Speed calculations for the westward-propagating features yield a value of approximately 1.2 to 2.4 cm s− 1 (1 to 2 km d− 1), with annual mean SSF anomalies thus requiring about 4 years to propagate from the Tail of the Grand Banks in the east to Cape Hatteras, North Carolina, in the west. This propagation speed and the timing of the SSF positional anomalies at the Tail of the Grand Banks for the 29-year study period are in agreement with speeds computed for the propagation of quasi-decadal salinity anomalies through the Labrador Sea and the time of their arrival at the Tail of the Grand Banks. The small westward SSF anomaly propagation speed is an order of magnitude smaller than the associated currents, in agreement with a highly damped flow-through system originating from both Davis Strait and the West Greenland Current as discussed by other workers. Observations from both southern and northern portions of the study domain, within both continental shelf and slope waters, show that interannual changes in the volume of shelf water along with shelf water bulk properties exhibit a strong relationship with IAV of the SSF position over long time periods.  相似文献   

19.
The sediment dispersal system in southwestern Taiwan margin consists of two main parts: the subaerial drainage basin and the offshore receiving marine basin. In plan view, this sediment dispersal system can be further divided into five geomorphic units: (1) the Gaoping (formerly spelled Kaoping) River drainage basin, (2) the Gaoping (Kaoping) Shelf, (3) the Gaoping (Kaoping) Slope, (4) the Gaoping (Kaoping) Submarine Canyon and (5) the Manila Trench in the northernmost South China Sea. The Gaoping River drainage basin is a small (3250 km2), tectonically active and overfilled foreland basin, receiving sediments derived from the uprising Central Range of Taiwan with a maximum elevation of 3952 m. The Gaoping Submarine Canyon begins at the mouth of the Gaoping River, crosses the narrow Gaoping Shelf (~ 10 km) and the Gaoping Slope, and finally merges into the northern termination of the Manila Trench over a distance of ~ 260 km. The SW Taiwan margin dispersal system is characterized by a direct river-canyon connection with a narrow shelf and frequent episodic sediment discharge events in the canyon head.In a regional source to sink scheme, the Gaoping River drainage basin is the primary source area, the Gaoping Shelf being the sediment bypass zone and the Gaoping Slope being the temporary sink and the Manila Trench being the ultimate sink of the sediment from the Taiwan orogen. It is inferred from seismic data that the outer shelf and upper slope region can be considered as a line source for mass wasting deposits delivered to the lower Gaoping Slope where small depressions between diapiric ridges are partially filled with sediment or are empty.At present, recurrent hyperpycnal flows during the flood seasons are temporarily depositing sediments mainly derived from the Gaoping River in the head of the Gaoping Submarine Canyon. On the decadal and century timescales, sediments temporarily stored in the upper reach are removed over longer timescales probably by downslope-eroding sediment flows within the canyon. Presently, the Gaoping Submarine Canyon serves as the major conduit for transporting terrestrial sediment from the Taiwan orogen to the marine sink of the Manila Trench. Seismic data indicate that the Gaoping Submarine Canyon has been eroding the Gaoping Slope intensely by presumed hyperpycnal flows and transporting sediments from the canyon head to the middle and lower reaches of the canyon. The middle reach is a sediment bypass zone whereas the lower reach serves as either a temporary sediment sink or a sediment conduit, depending on relative prevalence to deposition or erosion during canyon evolution. Contrast differences in channel gradient and travel length between the Gaoping and Amazon sediment dispersal systems suggest that the Gaoping (Kaoping) River-Canyon system is an active sediment dispersal system for transporting terrestrial materials to the deep sea. The fate of the Gaoping River sediment is the northern Manila Trench.  相似文献   

20.
Flux of bulk components, carbonate- and silicate-bearing skeleton organisms, and the δ15N-isotopic signal were investigated on a 1-year time-series sediment trap deployed at the pelagic NU mooring site (Namibia Upwelling, ca. 29°S, 13°E) in the central Benguela System. The flux of bulk components mostly shows bimodal seasonality with major peaks in austral summer and winter, and moderate to low export in austral fall and spring. The calcium carbonate fraction dominates the export of particulates throughout the year, followed by lithogenic and biogenic opal. Planktonic foraminifera and coccolithophorids are major components of the carbonate fraction, while diatoms clearly dominate the biogenic opal fraction. Bulk δ15N isotopic composition of particulate matter is positively correlated with the total mass flux during summer and fall, while negatively correlated during winter and spring. Seasonal changes in the intensity of the main oceanographic processes affecting the NU site are inferred from variations in bulk component flux, and in the flux and diversity patterns of individual species or group of species. Influence from the Namaqua (Hondeklip) upwelling cell through offshore migration of chlorophyll filaments is stronger in summer, while the winter flux maximum seems to reflect mainly in situ production, with less influence from the coastal and shelf upwelling areas. On a yearly basis, dominant microorganisms correspond well with the flora and fauna of tropical/subtropical waters, with minor contribution of near-shore organisms. The simultaneous occurrence of species with different ecological affinities mirrors the fact that the mooring site was located in a transitional region with large hydrographic variability over short-time intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号