首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
介绍了在钱江盾构隧道江北明挖段的设计中,针对不同的基坑深度和基坑安全等级,结合工程场地条件和地质情况,对深基坑围护地下连续墙、SMW工法桩、水泥土重力式挡墙及放坡开挖等型式的运用.阐述了软土地区大规模深基坑围护结构设计要点、地下连续墙叠合结构计算要点、隧道上部风塔与主体结构的共同作用的分析要点以及明挖隧道耐久性设计要点,为类似越江隧道岸边明挖段设计提供参考经验.  相似文献   

2.
依托昆明轨道交通火车北站深大基坑的工程实例,运用理正深基坑软件模拟基坑开挖和回筑全过程,计算深大基坑地下连续墙的内力、位移,对富水圆砾地层深大基坑地下连续墙的变形规律进行研究,并对地下连续墙的结构参数进行优化比选。分析研究得出:对于富水圆砾地层采用分层开挖方法及内支撑体系,其深度达到35.0 m的深大基坑,地下连续墙嵌入深度建议值为35.0 m,厚度建议值为1.5 m,并满足整体稳定性、抗倾覆、抗隆起、抗管涌验算要求。同时,针对性地提出了富水圆砾地层地下连续墙施工控制技术。  相似文献   

3.
卞媛媛  赵光  戴惠兰 《公路》2015,(2):83-86
深基坑地下连续墙变形是软土基坑设计的重要控制指标。以开挖深度平均达20m的某城市交通隧道深基坑监测为例,分析和讨论基坑开挖过程中地下连续墙的变形规律,得到地下连续墙最大水平变形随基坑开挖深度的变化规律,建立两者之间的定量比例关系。此外,引入国外关于地下连续墙水平变形的预估模型,研究其在本工程的适用性,并通过实测数据对模型中的关键参数进行反演,为类似工程的基坑设计计算提供参考。  相似文献   

4.
龙喜安 《路基工程》2015,(2):137-141
针对佛山地区的深厚软土地基,以荔村站地段基坑开挖为例,分析了基坑围护结构计算模式,根据基坑开挖工况和施工顺序,按作用在弹性地基上的竖向弹性地基梁模型逐阶段计算其内力及变形。对深厚软土地基条件下基坑围护结构选型进行了分析,基坑采用地下连续墙加内支撑的支护形式和明挖法施工。拟设了基坑围护结构尺寸,运用理正深基坑支护结构设计软件进行计算,分析了基底加固深度、连续墙嵌固深度和支撑间距条件对基坑整体抗滑动稳定性、抗倾覆稳定性和抗隆起稳定性、围护结构水平位移和内力的影响,优化了满足地质条件和设计要求的围护结构设计方案。  相似文献   

5.
薛磊 《城市道桥与防洪》2024,(1):182-185,198
随着地下建设空间的进一步利用,地下连续墙应用范围不断向下拓展。目前,地下连续墙已经作为永久受力结构应用于建、构筑物主体结构中。基于上海远方相关地下连续墙锚碇基坑实践,对地下连续墙作永久受力结构的应用进行探讨,并针对框架式地下连续墙、桩-墙咬合式地下连续墙、圆形地下连续墙施工关键技术进行阐述。结果表明,作永久受力了的地下连续墙结构通常较为特殊,部分为特殊结构形式,部分包含特殊接头形式,在目前的施工技术下是可以实现地下连续墙作永久受力结构的。用集约高效,推进城市功能复合。创建“就近职住、 功能复合”的现代城市,在规划及设计中进行街道一体化设计。  相似文献   

6.
杭州地铁1号线深基坑地下连续墙变形有限元分析   总被引:3,自引:2,他引:1       下载免费PDF全文
针对杭州地铁1号线火车东站深基坑地下连续墙变形超过设计值的情况,对连续墙变形进行了有限元分析,计算结果与监测数据较为接近,验证了数值模型的可靠性;通过现场调查结合有限元分析认为,支撑架设不及时、降水不到位、基坑周边堆载是造成连续墙变形急剧增大的主要原因;探讨了上述因素对连续墙变形的影响;针对存在的问题及时采取措施控制变形,监测表明变形渐趋稳定,基坑安全可控。  相似文献   

7.
膨胀土具有胀缩性、超固结特性和裂隙性等特性,在该类土体内进行基坑开挖有很大的工程风险。为深入了解膨胀土中深基坑开挖过程中周边土体受力机理和变形规律,进行了室内模型试验和数值计算模拟研究。深基坑模型试验以相似比1∶100进行设计,按照基坑开挖与支护的实际步骤分步进行。数值模拟采用FLAC3D建立考虑支护结构与土体相互作用的基坑三维计算模型,实现基坑分步开挖及支护的三维全过程动态分析。通过模型试验结果和数值模拟结果,得出周边土体沉降、土压力变化、地下连续墙变形等的变化规律,为类似膨胀土地层中深基坑的设计和施工提供参考。  相似文献   

8.
为了分析深基坑与地铁车站共用地下连续墙影响下车站和隧道连接节点的变形特性,保护地铁线路运营的整体安全,通过现场测试和数值模拟展开研究。根据上海地区深基坑与地铁车站共用地下连续墙工程实例的现场测试数据,分析了开挖施工过程中车站与地铁盾构隧道的竖向位移分布特征,并采用三维数值模型研究了共用地下连续墙深基坑开挖深度、相对位置对车站与隧道节点变形的影响,探讨了车站与隧道节点的曲率半径、相对弯曲的发展变化规律,并判断其安全状态。测试结果与数值分析均表明,车站与隧道节点变形比隧道最大沉降处更加不利;节点的曲率半径随基坑开挖深度的增加而减小,相对弯曲随基坑开挖深度的增加而增加;基坑与车站完全共用地下连续墙或远离隧道时,节点处的曲率半径相对较大。  相似文献   

9.
对深基坑开挖进行风险识别与评价时,提出了将WBS-RBS法与G1法相结合的定性与定量评价模型,并以南宁金凯路地铁车站为例,应用该模型计算得出的风险值从而确定施工单元风险等级。计算结果表明,深基坑开挖过程中,地下连续墙施工A2,基坑开挖A3,主体结构施工A5均为Ⅲ级风险。该模型无需构造判断矩阵,避免了一致性检验不一致的发生,提高了结果准确度,可供类似工程项目风险评价参考。  相似文献   

10.
莫桑比克马普托大桥南锚碇基础采用外径50 m、壁厚1.2 m、深度56 m地下连续墙止水帷幕结构,基坑开挖深度36.3 m。在基坑开挖至27 m深时,出现1处基底突涌事故,导致基坑无法正常开挖施工。分析基坑突涌的形成原因及地下连续墙的封水效果,提出采取坑外降水方式将基坑外部承压水水头控制在开挖面以下的处治方案。通过抽水试验获取场地的水文地质参数,进行深基坑降水设计,并介绍减压井施工工艺及分阶段实施基坑降水情况。马普托大桥南锚碇深基坑降水处治取得了较好的施工效果,保证了工程的顺利完成,相关施工方法和设计方案可为类似工程提供参考。  相似文献   

11.
为探讨地下连续墙发生渗漏时的治理方案,结合富水区地铁深基坑开挖实例,对施工现场实际情况、渗漏原因、施工工序、施工难度及周边环境等因素进行综合分析比较,提出多种应对方案,为深基坑工程施工提供了借鉴和参考.  相似文献   

12.
王坤  黄涛  邓俊 《路基工程》2010,(6):150-152
对深基坑施工前期降水影响下地下连续墙的受力进行分析,重点考量了地下水的静水压力及渗流压力对连续墙的影响。以Saenz模型和地下水渗流模型及Darcy公式为基础,对天津地铁二号线青年路站工程条件进行分析概化,建立了地下水作用下连续墙墙体的应力-应变模型,为地下水影响下连续墙稳定性的量化研究提供了依据。  相似文献   

13.
黄福杰  陈浩民  何则干 《城市道桥与防洪》2020,(1):188-190,213,M0021
为确保处于深厚淤泥区的临近地铁基坑在新建基坑开挖支护过程中的安全性.通过有限元软件建立精细的三维计算模型,计算分析地铁基坑对新建基坑开挖、支护的力学响应特征。研究结果表明:开挖完成后,地铁车站基坑位移呈现岀“鼓肚型”,符合连续墙加内支撑基坑支护型式一般的变形规律;新建基坑围护桩最大侧移为24.5 mm,竖向位移为6.54 mm,均小于围护桩位移控制值,说明新建基坑支护体系设计具备合理性;地铁车站基坑围护结构最大位移为12.16 mm,远小于一级基坑位移限值。同时发现其地下连续墙两侧的位移增量不同,右侧(靠近新建基坑一侧)地下连续墙位移增量较小。其原因是新建基坑开挖淤泥区使右侧地下连续墙所受的主动土压力减少。  相似文献   

14.
王亦玄 《路基工程》2020,(4):176-180
随着城市地下空间的开发,如何控制深基坑变形对周边环境的影响成了深基坑设计和施工的关键技术。对于基坑变形控制能力较强的板式支护体系,其支护内支撑的设置是基坑工程设计和施工,以及影响基坑变形的关键因素。以上海临港新城主城WSW-C2-10地块限界房产项目深基坑工程为例,通过基坑监测数据分析并结合有限元数值模拟软件分析,揭示了砂质地层中内支撑对深基坑变形的影响规律。  相似文献   

15.
为克服狭小场地条件下地下连续墙钢筋笼施工困难的问题,提出一种新型地下连续墙配筋形式,并将其命名为“桩式墙”。首先,通过公式推导对桩式墙进行设计; 然后,对其施工过程进行数值模拟,并将数值模拟结果与监测结果进行对比分析;最后,形成桩式墙结构的设计方法,并以抗弯性能为切入点对比桩式墙结构、传统地下连续墙结构及支护桩结构的优缺点。研究结果表明: 与传统地下连续墙结构相比,同等情况下应用桩式墙结构需使用1.27~1.58倍的纵向钢筋,但可使施工期间的灵活性大幅提升,可在狭小或复杂场地深基坑围护结构设计与施工中应用。  相似文献   

16.
张治国  奚晓广  吴玲 《隧道建设》2018,38(9):1480-1488
为研究基坑分区开挖对邻近越江隧道保护的有效性,以上海市西藏南路双线越江隧道附近绿谷一期基坑工程为依托,首先采用有限元法建立数值模型,分析基坑分区与不分区开挖对地下连续墙位移和既有越江隧道收敛变形的影响。然后根据现场监测数据,研究基坑分区开挖下既有越江隧道和地下连续墙的变形规律。结果表明: 1)采用分区开挖的方式,地下连续墙最大位移减小23.9%,邻近越江隧道最大竖向位移减小35.4%,分区开挖施工对距离较近隧道的保护效果更好; 2)对于面积较大的分区,其开挖导致的地下连续墙变形更大; 3)既有越江隧道在基坑施工过程中发生了斜向压扁的不规则收敛变形,地下连续墙最大水平位移对邻近隧道的收敛变形具有一定的预测作用。  相似文献   

17.
某大桥为双塔双跨悬索桥,主跨跨径达到1 688 m,边跨钢箱梁长548 m,其西锚碇采用厚度为1.5 m的地下连续墙作为锚碇基坑开挖的主要围护结构,地下连续墙深入中、微风化泥岩,基坑开挖深度达到22.2 m,采用水泥粉喷桩加固软土。基于该大桥锚碇基坑围护结构施工,探讨超深锚碇基坑围护结构施工关键技术,并给出部分施工建议。  相似文献   

18.
叶可炯 《城市道桥与防洪》2022,(10):154-157,165
超深地下连续墙变形所导致的接缝渗漏问题是上海软土地区超深基坑施工所遇到的典型难题之一。本课题结合上海北横通道某深基坑工程,运用Plaxis 3D 有限元软件通过计算分析基坑开挖过程不同工况下的地下连续墙的变形规律,以及基坑开挖过程中地墙变形与地下墙接缝张开渗漏的关系。结果表明:(1)当基坑开挖深度大于12m或20m两个临界点时侧向位移增长速度显著。地下连续墙的最大水平位移发生在基坑边的中点附近,向两侧逐步减小,这主要是基坑角部空间效应引起的。(2)地下墙接缝张开渗漏的危险点并不是发生在基坑中点最大侧向变形处,而是基坑边中部与角部之间、靠角部较近的位置。(3)即使对于较小尺寸的超深基坑,当开挖深度较大时,长边位移仍较短边位移有明显增大。本文结论对超深基坑开挖地墙变形与地墙渗漏控制具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号