首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
基于三维不可压缩Navier-Stokes方程和RNG k-ε双方程湍流模型,对350 km/h高速动车组明线运行转向架周围空气流场进行数值分析,采用离散相模型对路面积雪引起的转向架风雪两相流流场进行数值研究。结果表明,转向架周围流场存在的大量空气涡流,影响了转向架周围的空气压力分布。转向架表面的雪花颗粒黏附堆积情况与转向架的安装位置及其周围的空气流场压差有关。中间车第一个转向架颗粒黏附数量最多,尾车第二个转向架黏附数量最少。通过优化转向架周围的裙板结构,转向架周围的空气压力有明显变化,转向架周围垂向方向空气压力差有减小趋势,转向架表面及前后导流板雪花颗粒黏附堆积数目比原方案降低了51.03%。  相似文献   

2.
采用基于Realizable k-ε湍流模型的数值仿真方法对制动夹钳积雪结冰问题展开研究,并通过风洞实验验证数值仿真结果的正确性。分析制动夹钳周围的空气流动特性和夹钳表面的压力分布特点。研究结果表明:高速气流主要在转向架下部流动,仅有少量低速气流向上偏转进入到转向架上方区域。大量雪粒子跟随高速气流冲刷制动夹钳并在其下表面形成严重的积雪结冰,而少量雪粒子跟随上扬气流进入转向架上方区域,重力作用下,在夹钳上表面形成少量积雪。雪粒子跟随高速列车单向运行时,气流对后侧制动夹钳的冲刷作用强于前侧,前侧夹钳处于负压环境中,而后侧夹钳迎风侧和底部呈现明显正压,导致后侧夹钳的积雪结冰前侧夹钳更为严重。  相似文献   

3.
通过空气动力学仿真分析和风洞试验,研究车辆转向架前端加装弧形防风雪导流槽对车辆转向架积雪区域空气动力学性能的影响,以及对转向架区域积雪结冰情况的影响。研究发现:在车辆转向架前端安装弧形防风雪导流槽,可以减少气流对转向架区域的直接冲击;可增加底部气体流速,使夹带雪花颗粒的气流快速通过转向架区域;空气流经导流槽发生明显下扬,使原空气流线在进入转向架区域时发生的上扬现象消失;安装弧形导流槽对整个转向架区域的积雪情况有明显改善作用。  相似文献   

4.
从仿真分析、风洞试验和线路测试3方面入手,综合分析转向架加装前端导流装置和空簧局部导流防护装置对列车空簧部位积雪结冰的影响。研究发现,采用全局导流和局部导流防护组合优化方案后,转向架前端来流出现明显下压现象,转向架区域上部的气流流速减小,下部气流流速增加,一方面减少了夹杂着雪花的气流对转向架区域的直接冲击,另一方面使得下部与转向架结构无接触的气体迅速通过转向架,从而在整体上减少了转向架各关键部件的积雪;在空簧处气流漩涡明显减少,使得雪粒子不容易被带入空簧附近区域,转向架空簧区域积雪量减少近80%,只在连接部位的缝隙处有少部分积雪,对列车的平稳性和舒适性影响甚微,提升了列车在高寒多雪地区的适应性。  相似文献   

5.
对简化的高寒动车组模型,运用OpenFOAM进行网格划分,采用SST k-ω的湍流模型来模拟高寒动车组转向架区域的空气流场特性,分析转向架区域的速度场与压力场。研究结果表明,转向架区域结构复杂,夹带雪粒子的气流将冲击转向架区域的发热元件,所受冲击部位正压较大,夹带的雪粒子于此迅速融化、结冰。同时在转向架上方存在大量低速涡流,雪粒子在低速涡流处静止并落于转向架部件表面。随着速度增加,转向架区域中夹带的雪粒子增加,相应部位的积雪、结冰问题更为严重。  相似文献   

6.
为适应高速列车进一步提速的更低气动阻力实际需求,针对CR400AF型高速列车动车转向架和带头型简化车体,应用底部流动导向控制思想,采用附加轻质易造型材料包覆原有部件的理念,开展转向架各部件流线型化和车体底部导流板综合减阻效果的验证试验与数值仿真研究。验证试验选择有无导流板的流线型转向架带简化车体模型,在3种试验速度工况下阻力试验值与仿真值误差均少于10%,验证了数值仿真的可靠性,带导流板试验模型较不带导流板试验模型均有减阻。数值仿真研究运用Realizable k-ε湍流模型,采用切割体笛卡尔网格划分技术,并在边界层内采用棱柱层网格,控制第1层网格的厚度,确保y+值能满足壁面函数要求。经稳态明线运行的仿真模拟网格无关性检验后,探究了流线型动车转向架与导流板组合运用的气动减阻特性及效果。对比了流线型动车转向架与安装导流板前后动车转向架、简化车体以及转向架舱上的阻力变化情况和压力分布变化情况,分析了转向架区域的流场结构变化。数值仿真结果表明:流线型设计的动车转向架相较于原始动车转向架有一定的减阻效果,在400 km/h的运行速度下减阻率达到1.08%。流线型设计动车转向架与导流板组合运用后...  相似文献   

7.
轨道列车转向架区域的积雪结冰现象,是关乎列车运行稳定以及行车安全的关键问题。为了解决转向架区域的积雪结冰问题,研建列车转向架积雪结冰风洞以研究原始比例模型转向架区域流场特性。基于SST k-ω的IDDES湍流模型,分析不同运动边界条件下风洞试验段气流流动特性,探索积雪结冰风洞在现有运动边界条件下的流场模拟适应性与差距。通过网格无关性验证和流场校测,验证数值方法能够满足积雪结冰风洞流场的模拟。研究结果表明:静止地面和静止轮对无法近似模拟真实环境下运动地面和旋转轮对的边界条件的流场特性,轨面以上的空间平均速度最高偏大5倍,静止地面和旋转轮对的风洞实际边界与真实边界更接近;静止地面和静止轮对下转向架后侧的空间压强平均负压高于其他工况,车体后端板表面和转向架表面平均负压强偏差较大,静止地面和旋转轮对的表面负压平均偏差9%,转向架轮对表面压强偏差15%;不同工况下的转向架区域的湍流度差别不大,转向架前侧区域的湍流度在静止地面和轮对下整体偏大。综上所述,在不同试验段运动边界条件下,现有积雪结冰风洞中静止地面和旋转轮对边界条件能较好地模拟实际运行状态下的转向架区域流场特性,为后续试验研究转向架区域的...  相似文献   

8.
基于空气动力学数值模拟方法,针对列车不同部位的转向架和转向架结构表面的气动阻力分布进行分析,对高速动车组列车整车气动效应进行数值仿真。研究结果表明:转向架流场区域在靠近来流端的上部会形成部分死水区,该区域流场与外部质量交换较小,转向架结构表面在来流方向上游会形成一个正压区,在下游方向的转向架结构表面会形成小范围的负压区。列车头车转向架气动阻力明显高于中间车和尾车,其中列车头车I位转向架受到的气动阻力最大,其次是头车II位端转向架,列车的中间车和尾车转向架阻力分布较为均匀,均为头车转向架阻力的60%左右。  相似文献   

9.
转向架作为高速列车大面积裸露在外且外形复杂的运行部件受到列车底部气流的直接作用,区域气动外形结构对高速列车整车气动阻力具有重要影响。基于三维稳态SST k-ω双方程湍流模型,采用数值仿真方法研究了轴箱外置式转向架不同包覆方式对高速列车气动性能的影响。研究了转向架区域安装小裙板、半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板等5种方案下的高速列车气动性能,比较了不同方案下高速列车气动阻力的变化规律,阐明了高速转向架包覆方式对整车气动阻力、车底流动特性以及列车表面压力分布的影响。研究结果表明:随着转向架裙板包覆面积的增加,转向架腔后端板受到的气流冲击逐渐减弱,后端板上的正压分布降低,列车转向架区域周围的边界层厚度逐渐减小,转向架区域内的压力分布差异性逐渐减小,从而实现了列车整车气动阻力系数的降低。与小裙板模型相比,半包裙板、全包裙板、全包裙板+小底板以及全包裙板+大底板模型的列车气动阻力系数分别降低了5.2%、8.65%、10.3%、11.1%。对于轴箱外置式转向架来说,全包裙板+大底板方案可有效改善转向架区域流场,降低整车气动阻力。研究得到的转向架包覆方式将为新一代高速列车气动...  相似文献   

10.
利用SIMPACK软件建立某高速动车组(包括2节动车和1节拖车)的纵向、垂向、横向耦合动力学模型,在模拟高速运行并考虑基本气动力的作用下,探讨了高速动车组车间纵向、垂向、横向减振器对动车组运行平稳性指标及振动加速度、曲线通过安全性能的影响.计算结果表明,安装车间减振器对高速动车组的动力学性能具有一定的改善作用.  相似文献   

11.
为分析高速列车制动盘发热融化的雪水对转向架区域结冰的影响,建立包含拖车转向架和简化车体的几何模型和转向架制动盘甩水模型,采用三维非定常可实现k-ω双方程湍流模型与离散相模型耦合的数值方法,研究制动盘甩出的水滴在转向架区域的分布。采用液膜模型研究水滴在转向架表面及转向架舱底面的沉积。研究结果表明:制动盘融化的雪水经制动盘甩出后大都存在于转向架的中间区域,在转向架两侧分布较少;这些水滴主要沉积在构架中间区域、前后制动装置、空气弹簧内侧面、牵引梁和牵引拉杆靠近后轮对的区域,而在轴箱装置、垂向减振器、纵向减振器和横向减振器上沉积的水滴较少;在200,250和300 km/h 3种不同速度下,转向架表面总的液膜质量呈现出先下降后上升的趋势;转向架舱底面沉积的水滴主要分布在靠近制动盘附近的表面。  相似文献   

12.
为提高我国高速动车组车外噪声源识别分辨率,获得更准确的噪声源分布特征,对传统的噪声源识别波束形成算法进行多普勒效应消除算法和基于快速傅里叶变换的非负最小二乘迭代反卷积算法(FFTNNLS)的优化,并基于优化后的算法测试我国某新型动车组以不同速度通过桥梁线路区段时的车外噪声源分布。结果表明:算法优化后动车组车外噪声源识别分辨率大幅提高;动车组高速运行时,声能量主要集中于受电弓、转向架和头车排障器等区域;动车组运行速度由200km·h-1提高至350km·h-1,车辆下部区域声功率占比由91.3%降至78.9%,车体区域由6.5%升至11.5%,受电弓区域由2.2%升至9.6%。算法优化后得到的动车组车外噪声源的定位更加准确、频谱特征更加明显。  相似文献   

13.
90年代中期以来,铁路客运不断提速,并已成为铁路改革和技术创新突出的闪光点。飞驰在沪宁杭之间被命名为“新曙光号” 的新型“子弹头”列车,代表了当前我国铁路提速和客运技术创新的新水平。 “新曙光号” 是2动9拖内燃动车组,学名叫NZJ1型准高速内燃动车组,属动力集中式,即动力集中在机车上,客车没有动力。首尾2节为动车,中间9节为拖车(客车),推挽式重联牵引。该动车组由戚墅堰机车车辆工厂、浦镇车辆工厂和上海铁路局联合研制。1999年8月,2台动车、9节拖车同时研制竣工出厂。9月在铁道部科学研究院环形铁道上进行  相似文献   

14.
针对高寒动车组冬季运行时转向架处存在冰雪堆积的问题,运用商用软件STAR-CCM+和拉格朗日颗粒模型,采用更为直观的风雪两相流技术对扰流设计后转向架区域冰雪附着情况进行模拟分析,并以壁面上的雪颗粒入射质量通量(IMF)来评价转向架区域的扰流板防冰雪效果。计算结果表明:雪强、雪颗粒附着特性、车速、扰流板高度对转向架冰雪附着率均有影响;扰流效果比较好的2种方案是,1改进的流线型扰流板方案可使转向架冰雪附着速率降至无扰流板车型的54%,同时自身承受24%的附着量;2高200mm的扰流板可使转向架冰雪附着速率降至无扰流板车型的70%,同时自身承受9%的附着量。并且扰流板上的附着量不会结冰,会随着气流流动的方向流向地面。  相似文献   

15.
刘宏友 《铁道车辆》2006,44(7):30-30
受日本川崎重工业株式会社的委托,四方车辆研究所负责对其生产组装后出口中国的第1列时速200kmEMU中的4号拖车进行了滚动台滚动试验。试验从2006年3月31日开始,至2006年4月9日结束。试验中对转向架正常情况、转向架悬挂参数失效情况(包括1位转向架2个空气弹簧失效、拆掉1位转向  相似文献   

16.
针对高寒动车组冬季运行走行部容易产生冰雪附着的问题,根据空气动力学原理设计了多种可加装于动车组走行部附近的扰流结构,并采用数值模拟的方法对原车和加装不同扰流结构之后的走行部气动流场进行对比分析。计算结果表明:加装优化后的防雪扰流装置可有效改善转向架区域的流场,扰流板的防冰雪效果与其形状和高度密切相关,改进方案最优参数下遮蔽效果良好,转向架部位进雪量减少,转向架空气阻力系数降至原车的52%。  相似文献   

17.
基于3种典型踏面的高速转向架稳定性研究   总被引:3,自引:1,他引:2  
在分析高速轮轨匹配特征的基础上,以350 km.h-1速度等级的CRH3动车组作为研究对象,应用线性稳定性分析方法绘制高速轮轨空间的稳定安全裕度3维图。线性稳定性计算表明:等效锥度越大,转向架蛇行振动固有频率越高,因而必须不断增强抗蛇行减振器的串联刚度。非线性稳定性仿真计算表明:抗蛇行减振器需要利用其动态液压刚度的非线性形成宽频带吸能特性,以满足衰减蛇行振动、控制蛇行振幅和权衡准静态曲线通过性能等要求。仿真计算得出的动车转向架横向加速度值与实际测试的加速度值相吻合。根据曲线踏面磨耗情况确定了CRH3动车组选用3个典型车轮踏面(XP55,S1002CN和LMA)可以达到的最高商业运营速度。  相似文献   

18.
高速动车组与内燃、电力机车等传统牵引动力设备有显著区别,其控制、制动系统的设计理念体现出操作简便和导向安全的原则,在转向架结构、车体轻量化、列车动力分配、电传动控制技术、列车信息网络及制动系统都包含独特的核心技术。现对CRH2型动车组制动系统特性谈一些粗浅的看法。一、制动模式针对性强,趋于智能化CRH2型动车组的制动系统具有多种制动控制方式,可以满足不同运行条件下对列车制动的需求。行车中,动车组制动控制装置能接受列车信息网络或司机操纵动作等指令,进行常用制动、快速制动、紧急制动、耐雪制动等相应的制动动作。1.常用制动特性。常用制动的制动力共分为7级,行车操纵中使用机会最多。系统在制动时自动进行延迟充气控制,M车(动车)上产生的电气再生制动除满足本车制动力要求外,多余制动力用来代替T车(拖车)的一部分制动力,T车制动力不足时则由其空气制动力补充,从而维持本制动单元(一个动车和一个拖车构成一个制动单元)所需要的制动力,并实现和保持规定减速度。另外制动系统还具有空、重车载荷适应功能,制动力能够自动按需变化,维持一定的减速度。2.快速制动特性。动车组的快速制动功能,具有比常用制动高1.5倍的制动力。在司机操作制动手柄...  相似文献   

19.
以给定动车组列车占用存车线时间为前提、以同一列位在同一时间最多只能被一列列车占用的相容性条件为约束、以提高存车线利用率和减少调车作业走行距离为优化目标,建立动车运用所存车线运用的0-1规划优化模型;考虑到如果同一时间到达的动车组列车数量超过存车线的容纳能力而无法为全部动车组列车安排存车线的情况,为尽可能多的动车组列车安排存车线,对动车运用所存车线运用优化模型进行扩展,设计基于极大动车存车线运用方案k剔除邻域的模拟退火算法。以某动车运用所为例验证了该模型和算法的合理性。  相似文献   

20.
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明:列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善了底部区域部件气动特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号