首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《公路》2017,(3)
泰州长江公路大桥主桥采用主跨2×1 080m的三塔两跨悬索桥,为国内外首座千米级三塔悬索桥,单根主缆长3 100余米,为目前国内最长主缆。主缆采用PPWS法架设施工,主要介绍泰州大桥主缆施工牵引系统设计与施工,为今后三塔悬索桥施工提供一定的借鉴。  相似文献   

2.
<正>五峰山长江大桥最后一根主缆索股近日架设完成。悬链线形状的主缆是悬索桥上部结构的主要承重结构,而主缆架设则是悬索桥上部结构施工的关键环节。正在建设的五峰山长江大桥,是世界上第一座可以跑高速铁路的公铁两用悬索桥,首次实现铁路桥梁一跨飞越长江天堑。大桥主缆直径1.3 m,为目前世界上最大直径主缆,单根主缆拉力高达9万t,足以  相似文献   

3.
针对大跨度三塔悬索桥在不利工况下中塔两侧主缆不平衡力较大的问题,以泰州长江大桥、马鞍山长江大桥、武汉鹦鹉洲长江大桥3座大跨度公路三塔悬索桥为例,分析该问题的解决思路。经分析,对于大跨度三塔悬索桥,中塔采用钢塔或钢-混凝土叠合塔;加劲梁在中塔处设置纵向约束;鞍槽内主缆抗滑安全系数K在1.5~2之间取值(实际K≥1.2已足够安全)的设计思路对减小该类桥梁中塔顶主缆不平衡力有利。另外,建议对极端加载工况(一个主跨满布活载、另一个主跨空载)的活载进行额外的合理折减;不连续主缆的设计也是可以考虑的思路。  相似文献   

4.
主缆线形施工控制是悬索桥施工过程中极其重要的一环。为保证主缆线形精度要求,文中结合南溪长江大桥特点,从基准索股线形控制和一般索股线形控制2方面,分析研究主缆线形施工控制方法。用文中所述主缆线形施工控制方法,对南溪长江大桥主缆线形进行调整,经检测大桥线形良好,满足精度要求。  相似文献   

5.
常大宝 《公路》2012,(3):62-65
泰州长江公路大桥是目前国内首座千米级的三塔悬索桥,主跨跨径为2×1 080 m,其主跨采用吊索钢箱梁结构形式,边跨采用钢筋混凝土连续箱梁桥结构.结合泰州长江公路大桥上部结构主缆架设的施工进展情况,详细分析、阐述主缆架设的施工关键技术及各项控制指标.  相似文献   

6.
重庆寸滩长江大桥为主缆主跨跨度880 m,矢跨比1/8.8的双塔悬索桥,主缆采用预制平行钢丝索股。介绍该桥主缆施工技术,重点阐述该桥主缆施工过程中采取的猫道体系转换、小循环牵引系统、主缆索股牵引过程控制、基准索股线形控制等措施,上述措施使主缆施工得以顺利完成,且施工质量满足规范及设计要求。  相似文献   

7.
常大宝 《中外公路》2011,31(5):145-148
三塔悬索桥相对两塔悬索桥多了一个主跨,是一个全新的桥梁结构形式.其主缆架设要经过3个主塔,各工序均要复杂很多.笔者结合国内外首座千米级三塔悬索桥-泰州长江公路大桥上部结构主缆架设的施工进展情况,详细分析说明主缆施工中常遇到的困难及解决方法,为以后的三塔大跨悬索桥主缆施工提供有价值的参考.  相似文献   

8.
主缆无应力长度是悬索桥施工控制的重要参数之一,采用通用有限元软件Midas/Civil对中渡长江大桥主缆无应力长度进行分析,并对计算结果进行修正,得到了中渡长江大桥主缆各索股无应力长度表。同时,研究了主缆弹性模量、主缆钢丝平均直径、加劲梁自重等因素对主缆无应力长度的影响。结果表明:主缆无应力长度与主缆弹性模量、主缆钢丝平均直径呈正比关系,与加劲梁自重呈反比关系,并通过线性拟合得到相关比例系数,可为同类型桥梁主缆无应力长度施工控制提供借鉴。  相似文献   

9.
连镇铁路五峰山长江大桥为主跨1 092 m的公铁两用悬索桥,采用双主缆地锚式结构,其缆索系统由索鞍、主缆、索夹及吊索组成。该桥缆索系统施工过程较为复杂,为保证缆索系统施工满足验收标准的要求,对其主要参数敏感性进行分析,并开展施工精细化控制。结果表明:索鞍位置、主缆弹性模量、温度、主缆不圆度等参数均会对缆索体系的施工精度带来影响。根据施工全过程分析,在该桥缆索系统施工控制中,主索鞍共顶推11次,南、北塔累计顶推量分别为190 cm、196 cm;考虑实际钢丝直径、弹性模量和索鞍处曲线修正等,确定大桥主缆索股无应力长度为1 931.974~1 934.428 m;在主缆架设完成、紧缆后,测量实际空缆线形,按实际空缆线形对索夹位置及吊索长度进行修正。大桥缆索系统施工实测偏差结果均满足安装验收标准的要求。  相似文献   

10.
张靖皋长江大桥南航道桥为主跨2 300 m的双塔双跨吊悬索桥,为适应建设条件特点,结合悬索桥索塔受力特点,创造性地提出了主缆缆力自平衡体系。自平衡装配式主索鞍是实现自平衡体系的关键构造,从张靖皋长江大桥自平衡装配式索鞍功能需求出发,综合考虑摩擦系数、结构受力、制作安装难度、施工过程需求、维护保养等问题,对自平衡装配式主索鞍的合理型式选择、结构设计、滚动副选材等问题进行阐述,为类似工程提供参考。  相似文献   

11.
三塔悬索桥适应性及主缆抗滑移技术探讨   总被引:2,自引:1,他引:1  
以泰州长江公路大桥等3座悬索桥为背景,分析三塔悬索桥的适应性,并对该桥式的中塔选型、主缆与鞍槽间的抗滑移安全系数及整体刚度的取值进行研究。研究表明:三塔悬索桥得以实施的技术突破关键是中塔采用合理的纵向抗弯刚度;主缆与鞍槽间的摩擦系数取0.20较为合适,建议主缆与鞍槽之间的抗滑移安全系数不小于1.65;泰州长江公路大桥在不计冲击力的汽车荷载作用下,加劲梁最大竖向挠度为4.337 m(向下),挠跨比为1/249,取用该挠跨比是对悬索桥整体刚度的尝试与实践;该桥主缆与鞍槽间摩擦系数若取用0.2,可进一步提高桥梁的总体刚度。  相似文献   

12.
主缆是悬索桥的主要受力构件,主缆内部湿度是主缆腐蚀的关键因素,对主缆内部湿度的研究,是安全且经济地进行主缆维护管理的重要前提。以泰州大桥为工程背景,结合桥梁健康监测系统及主缆除湿系统湿度监测的数据分析,首先找出了泰州大桥主缆湿度的纵向分布特征,给出了主缆内部易损的高湿度区位,为泰州大桥后期的主缆检测及维护管理工作重心的确定提供有效指导;通过相关性分析得出了主缆鞍座位置、四分点位置、跨中位置的湿度关系,并拟合了描述湿度关系的函数模型,为主缆的管理养护以及主缆湿度传感器的监测维护工作提供了依据。  相似文献   

13.
鹦鹉洲长江大桥设计为三塔四跨钢-混结合加劲梁悬索桥,跨度布置为(200+2×850+200)m,两主跨主缆跨度均为850m,主缆矢跨比为1/9,边跨主缆跨度均为225m。三塔不等高,中塔为钢-混混合结构,高152m;边塔为混凝土结构,高126.2m。桥塔横向均为框架结构,塔柱之间均设置上下2道横梁。中塔混凝土下塔柱纵向采用台阶式的I形结构,钢上塔柱纵向采用人字形结构;边塔纵向采用I形塔结构。桥塔塔柱根据位置的不同分别采用单箱单室和单箱三室截面;横梁采用预应力混凝土结构。桥塔施工采用泵送混凝土工艺。分别对桥塔进行稳定及纵、横向静力计算分析,结果表明结构强度、刚度、稳定性均满足规范要求。  相似文献   

14.
正武汉杨泗港长江大桥首根主缆索股安装完成,标志这座世界最大跨度双层悬索桥建设正式进入主缆架设阶段。武汉杨泗港长江大桥为双塔双层地锚式钢桁梁公路悬索桥,主跨1 700 m,是武汉市第十座长江大桥,也是长江上首座双层公路大桥。  相似文献   

15.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

16.
正2019年5月10日,新建连镇铁路五峰山长江大桥上、下游各最后1根索股牵引过江,完成架设,至此,五峰山长江大桥704根索股全部架设完成(见图1)。五峰山长江大桥是我国首座公铁两用悬索桥,也是目前世界上荷载最重、行车速度最快的公铁两用悬索桥。2根主缆直径均为1.3m,单根主缆设  相似文献   

17.
《城市道桥与防洪》2012,(7):121-121
<正>江西九江新长江大桥北主塔近日顺利封顶。九江新长江大桥北主塔高242.308 m,采用H形结构,塔柱采用液压爬模施工法循环施工,浇筑标准节段高4.5 m,横梁与塔柱施工异步进行,塔柱施工整个过程历时14个月。九江新长江大桥为双塔单侧混合梁斜拉桥,主桥跨径为818 m,居已建和在建同类桥梁世界第六,是国家  相似文献   

18.
针对采用分段悬链线法计算悬索桥主缆成桥状态的缺陷,以武汉杨泗港长江大桥主桥(主跨1 700m的钢桁梁双层悬索桥)为背景,提出一种新的悬索桥主缆成桥状态计算方法。该方法基于传统分段悬链线理论对索段进行受力分析,推导出全桥索段的统一悬链线方程,以主缆斜率最小点作为计算起始点,根据主缆线形与斜率的关系和变形相容条件建立方程,利用主缆张力的水平分力与垂度的变化规律求解方程。该方法能保证对平面悬索桥的缆索结构求解收敛。根据该方法编写程序对杨泗港长江大桥主桥主跨主缆的成桥状态进行分析,并与分段悬链线法的计算结果进行对比,结果表明该方法正确可行。该方法的计算结果已成功应用于杨泗港长江大桥主桥的设计中。  相似文献   

19.
陈凯  江夏 《交通科技》2013,(1):30-31,35
在应力及腐蚀环境的耦合作用下,悬索桥主缆易引发应力腐蚀破坏,基于S形钢丝环兼具主缆缠丝定型和密封主缆的特点,泰州大桥采用S形钢丝+表面防腐涂装+除湿系统组成的综合防腐体系,同时引入S形钢丝的施工技术对缠丝时间、缠丝应力和焊接方式进行控制,实现了大桥主缆的顺利施工,并提高了主缆防腐保护效果。  相似文献   

20.
武汉杨泗港长江大桥主桥为主跨1 700m的单跨双层钢桁梁悬索桥。该桥2个桥塔均采用沉井基础,沉井下部为钢壳混凝土结构,上部为钢筋混凝土结构;锚碇采用外径98m、壁厚1.5m的圆形地下连续墙基础;桥塔为钢筋混凝土门式结构,1号和2号塔高分别为231.9m和243.9m,采用C60高性能混凝土浇筑;主缆采用直径6.2mm、标准抗拉强度1 960MPa的锌铝合金镀层高强钢丝;加劲梁采用华伦式桁架全焊接结构。在该桥施工中,沉井隔舱区域硬塑黏土层采用搅吸机+高压射水取土的工艺施工,刃脚盲区采用爆破+斜向弯头吸泥机取土的工艺施工;地下连续墙采用液压成槽机和双轮铣槽机进行槽段成槽施工,内衬及填芯混凝土采用逆作法施工;桥塔采用液压爬模施工,通过优化混凝土配合比、选择高压输送泵将C60混凝土一泵到顶;主缆钢丝为国产新材料,按4个阶段组织生产;主缆采用索股混编,PPWS法架设,利用双线往复式牵引系统进行索股牵引;加劲梁采用整体节段制造、吊装技术施工,钢梁节段采用缆载吊机从跨中向桥塔方向逐段吊装。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号