首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 703 毫秒
1.
针对有限元软件中考虑徐变作用时直接选用规范值导致模拟结果精度不足的问题,提出先进行混凝土受压徐变试验,后将试验数据应用于有限元软件进行模拟分析的方法。基于鲍罗克斯和内维尔建立的徐变预测经验式,在短期试验数据的基础上进行修正,得到适用于笔者C55混凝土的长期徐变预测模型。研究结果表明:现有徐变预测模型与试验实测徐变发展规律之间存在一定的差异性,该差异会对桥梁线型模拟结果造成显著影响,且影响会随着时间增长而增大;建立长期徐变预测模型时,适当增加短期试验时间,可有效提高预测精度。  相似文献   

2.
针对预应力混凝土连续刚构桥梁挠度问题,采用室内试验和模型分析混凝土收缩徐变和预应力损失对结构挠度变形的影响。结果表明:混凝土徐变增长会导致桥面纵坡坡度变化,结构应力重分布。混凝土前期徐变系数增长快,持荷40d的徐变系数为1.004,180d时增幅仅为2.988%。桥梁顶板预应力损失对结构挠度变形影响比底板更明显,顶板预应力损失为20%时,运营两年的挠度增幅达67.5%。因此,混凝土结构物受荷加载不宜过早,对结构的挠度进行控制有利于提高桥梁的安全性能。  相似文献   

3.
为准确预测实际工程结构混凝土徐变的发展规律,在反映恒温、恒湿条件下混凝土徐变性能的基准徐变系数基础上,引入温度、湿度徐变系数,建立了预测实际环境温、湿度条件下混凝土徐变的组合徐变模型.借鉴徐变计算理论,提出了由环境温度变化引起的混凝土附加徐变的实用计算方法.研究结果表明:自然环境中随时间变化的温、湿度导致现行徐变模型的预测结果与实际的徐变变形存在显著差异,其引起的混凝土附加徐变随季节更替而产生周期性增减交替变化;组合徐变模型给出的结果与试验结果最大相对偏差为6%,与试验结果最为接近的现行徐变模型相比,减小了7%.   相似文献   

4.
预应力混凝土桥梁组合结构中,混凝土自身的徐变效应会对桥梁结构的可靠性产生重要影响。选择上海某特大桥作为研究对象,采用三分点加载方式在梁上加载10KN荷载,构建了网格划分后的混凝土T形梁有限元模型。根据徐变模型将徐变系数的计算公式导入到蠕变程序中,经过编译计算得到徐变模型下的时程曲线,实现了对预应力混凝土T形梁的徐变效应分析。结果表明,修改了有限元分析软件中自带的显示蠕变准则之后,文中徐变模型得到的混凝土T形梁徐变效应与实际情况更加贴近。  相似文献   

5.
讨论预应力混凝土桥梁徐变模型试验主要影响因素及处理原则,提出了模型梁设计时需满足的相似关系;基于CEB-FIP(MC90)徐变模型,建立了模型梁与原型梁跨中徐变长期上拱的相似关系.模型梁试验推算值与实桥测试值比较表明,推算值具有较好的精度.本文为预应力混凝土桥梁非足尺结构模型的徐变试验研究提供新思路,建立的公式在工程试验研究中具实用性.  相似文献   

6.
基于合理的材料本构关系模型,采用有限元法对长期荷载作用下钢管混凝土柱的变形-时间关系曲线进行了计算,并在此基础上对长期荷载作用下钢管混凝土中核心混凝土的徐变系数终值进行了拟合和分析.分析结果表明:在长期荷载作用下,钢管混凝土中核心混凝土的徐变系数终值要明显小于素混凝土;采用0.9作为钢管内核心混凝土的徐变系数终值是合理且偏于安全的.  相似文献   

7.
采用推出试验和有限元方法研究了采用不同剪力连接件的钢-混凝土组合试件的界面长期滑移和应变发展过程; 参考Eurocode 4中推出试验标准试件, 设计了2组试件用于长期推出试验; 分别采用栓钉和PBL作为剪力连接件, 采用螺杆施加长期荷载, 测试了长期加载过程中的界面滑移、混凝土应变和钢梁应变; 同步加载测试了150 mm×150 mm×300 mm的混凝土试块的长期变形, 并以此变形计算混凝土徐变系数; 对比了徐变模型对计算结果的影响, 并讨论了不同混凝土徐变模拟方法。研究结果表明: 界面滑移和混凝土应变在加载初期增长较快, 加载120 d后达到稳定状态; 栓钉试件和PBL试件的最大界面滑移分别为0.162和0.068 mm, 最大值均位于界面底部; 栓钉试件和PBL试件的混凝土最大应变分别为7.30×10-5和1.34×10-4, 最大值均位于混凝土板底部; 钢梁应变在整个试验过程中基本保持稳定, 未出现明显的应力重分布, 栓钉试件和PBL试件的钢梁最大应变分别为3.7×10-5和6.5×10-5, 最大值均位于钢梁顶部; 混凝土徐变是影响钢-混凝土组合试件长期性能的主要因素, 不同混凝土徐变模型计算所得混凝土徐变系数与测试值的偏差为60%~140%, 说明混凝土徐变模型对有限元结果影响显著; 采用指数函数拟合混凝土徐变系数测试结果的拟合误差为2.4%, CEB-FIP90模型计算所得混凝土徐变系数在加载后期与测试值的误差为3.71%, 建议无法实测时可采用CEB-FIP90模型计算混凝土徐变系数。   相似文献   

8.
混凝土的收缩徐变会引起混凝土连续梁桥不断上拱或下挠。当前国内在建高速铁路中许多混凝土连续梁桥将采用无碴轨道,其可调性很小,必须控制铺轨后的徐变变形(后期徐变变形)。对几种常用规范的混凝土徐变系数影响因素、计算公式进行了对比研究,并以武广客运专线上一座(70+125+70)m混凝土连续梁桥为例,模拟整个施工过程按几个常用规范对该桥进行对比分析计算,研究了混凝土的收缩徐变对桥梁变形和截面应力的影响。计算结果显示,混凝土的收缩徐变引起的桥梁后期徐变变形不可忽视;根据不同规范计算得出的桥梁后期徐变变形差别较大。  相似文献   

9.
结合荆州长江大桥工程实例,探讨了高性能混凝土的徐变试验与斜拉桥施工阶段的分析方法。通过建立有限元分析模型,分析了混凝土徐变对主梁应力状态的影响,将斜拉桥按照CEB-FIP MC90、ACI209(92)与用户定义3种徐变预测模型计算出的数据与实际监测的数据进行对比分析,结果表明:按照CEB-FIP预测模型计算的徐变偏大,采用ACI与用户定义预测模型计算得到的应力与实际监测结果差别不大。  相似文献   

10.
在长期荷载的作用下,徐变会对桥梁钢管混凝土的承载力产生一定的影响。为了研究这种影响效应的规律,采用了弹性老化理论和继效流动理论计算了钢管混凝土的徐变效应,通过数值模拟研究了徐变效应下不同的物理参数对钢管混凝土承载力的影响,最终得出了徐变效应下混凝土极限承载力的影响系数的变化规律。  相似文献   

11.
基于粗集料在沥青混凝土中形成持力骨架,直接影响混凝土的承载能力,实验研究了粗集料组成及粒径对混凝土抗压和蠕变性能影响.参考标准级配中粗集料质量百分比,设计了含不同组成和粒径的粗集料试样(细集料含量相同),进行了不同温度下单轴压缩和蠕变实验,结果表明,沥青混凝土力学性能强烈依赖粗集料组成特性,并提出粗、细集料以2.36 m m为界限的划分依据.  相似文献   

12.
不同层位格栅加筋沥青混凝土的抗车辙性能   总被引:1,自引:0,他引:1  
为探索格栅层位对加筋沥青混凝土抗车辙性能影响的内在规律,采用10cm深车辙试模对不同格栅层位的沥青混凝土进行车辙试验,实测蠕变参数,建立粘弹性有限元模型,对不同深度的车辙模型进行最大剪应力计算,最后将二者对比分析.结果表明:格栅越靠近加载面,沥青混凝土的高温抗车辙效果越好,原因是格栅铺设于沥青混凝土中最大剪应力附近;格栅距离加载面一定位置时,沥青混凝土的最大剪应力增大,但沥青混凝土的抗车辙能力依然比未铺设格栅时的好.分析方法与所得结论对沥青层结构与材料设计具有一定的应用价值.  相似文献   

13.
为准确分析混凝土的收缩徐变效应,基于收缩徐变的三维特性,对自然变温度环境下的混凝土收缩徐变效应进行了分析,建立了变温环境下混凝土三维收缩徐变效应的力学模型,并结合有限元分析软件ABAQUS开发了相应的计算程序,随后通过两个算例验证了方法的可行性与结果的可靠性. 研究结果表明:对于长期下挠和混凝土应变,模型计算值最大误差分别为8.2%和 –7.1%;模型能够很好地体现温度对徐变应变的影响,总体变化趋势与实测值较为一致,最大误差为 –20.5%,随着龄期增长误差越来越小,最终值误差为6.4%.   相似文献   

14.
为研究大跨度钢管混凝土拱桥的徐变行为,基于混凝土徐变的B3模型,采用结构徐变效应分析的龄期调整有效模量法,建立了结构徐变的有限元分析模型.在此基础上,基于协同转动法考虑大跨度结构的几何非线性;利用生死单元技术模拟拱桥的分阶段施工过程;最后结合某大跨度中承式钢管混凝土拱桥,分析了考虑几何非线性和施工过程的徐变效应.数值分析表明:考虑这两个因素后拱肋挠度、钢管应力的变化在10%以内,而拱肋混凝土应力的变化可达50%;在分析大跨度钢管混凝土拱桥的徐变效应时,必须考虑几何非线性及施工过程与徐变的耦合作用.   相似文献   

15.
主要介绍了苏通大桥辅桥(140m+268m+140m的预应力混凝土连续刚构桥)主梁高性能混凝土的收缩徐变试验,并将部分试验结果与现有的几种收缩徐变模式进行了比较,试验结果将为苏通辅桥以及其它连续刚构桥的施工位移监测提供有益的依据。  相似文献   

16.
混凝土T梁桥拓宽的长期效应分析   总被引:1,自引:0,他引:1  
为了分析拓宽后桥梁的时间效应,研究了每一时段内由混凝土收缩引起的应力的连续变化和混凝土的弹性模量变化,根据能量原理推导了混凝土收缩徐变的位移法基本方程,按增量法分析了徐变应变的变化,编制了相应的计算程序。为验证理论计算的正确性,与小试件的试验结果作了比较。在拼接缝处的受拉区,应变计算值与实测值的相对误差为10%,计算精度比代数法高。在新梁混凝土的收缩应力和新梁自重应力的徐变作用下,3 a后新梁翼板的拉应力为2.67 MPa,可能会引起混凝土开裂。为减少收缩徐变对新旧梁受力的影响,建议新梁脱模后至少放置6个月后再进行拼接处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号