首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以CRTSⅠ型轨道板中部砂浆离缝为研究内容,采用有限单元法,建立该型轨道结构的弹性地基梁-板模型,分析不同长度和高度的离缝对轨道竖向位移及应力变化情况,结果表明:离缝长度变化较高度变化对轨道结构的竖向变形及应力影响要大;离缝长度在1个扣件间距(0.6 m)范围内时,长度一定,高度的变化对轨道结构的变形及受力几乎没有影响;离缝长度不大于1 m时,高度大于0.42 mm后,离缝区域轨道板处于完全脱空状态。建议在对板中离缝进行养护维修时,应将防止离缝长度的发展作为主要工作,并将轨道板应力作为衡量离缝对轨道板影响的主要指标。  相似文献   

2.
研究目的:CRTSⅢ型板式无砟轨道层间离缝不仅影响轨道的动力响应,而且危及行车安全。本文以车辆及层间离缝CRTSⅢ型板式无砟轨道系统为研究对象,基于车辆-轨道耦合动力学理论,建立此系统动力学模型,探讨层间离缝宽度及长度对车体加速度、轮轨力、钢轨位移及加速度、轨道板位移及加速度、底座板位移及加速度等动力响应的影响规律。研究结论:(1)当层间离缝纵向长度为1. 2 m,层间离缝宽度超过1. 5 m时,上述动力响应随层间离缝宽度的增大而增大,车体加速度、轮轨力、钢轨位移及加速度增幅不大,但轨道板位移及加速度、底座板位移及加速度增幅显著,特别是轨道板位移及加速度,较正常状态最大增幅分别为121%和81. 9%;(2)层间离缝横向贯穿后,在离缝长度小于1. 2 m时,对车轨系统动力响应影响较小;在离缝长度为1. 2 m至2. 4 m时,系统各部件动力响应明显增大,当离缝扩展至轨道结构中心位置以后,系统各部件动力学响应增大更为明显,尤其是轨道板位移和加速度,较正常状态最大增幅达到18. 87倍和10. 38倍,在离缝长度等于3. 0 m时,钢轨竖向位移达到2. 45 mm,已超过规范要求限值,所以离缝长度应控制在3 m以内;(3)在层间离缝长度为4. 8 m时,车体竖向加速度达到1. 56 m/s2,已超过规范要求限值,危及列车行车安全;(4)本研究结果可为CRTSⅢ型板式无砟轨道层间离缝养护维修工作及行车安全提供指导。  相似文献   

3.
针对某高铁出现的轨道板上拱离缝现象,考虑车轮动载荷和不平顺序列的影响,对轨道板离缝病害进行仿真分析。利用非线性有限元方法,分析不同离缝下轨道板的变形量以及应力变化,研究离缝对轨道板结构的影响;基于静力学仿真结果利用动力学方法,分析不同离缝下的轨道板、钢轨以及列车的动力学响应,研究不同离缝量对列车运行的影响。结果表明:离缝4~8 mm时会对轨道板造成破坏性伤害,随着离缝范围的扩大至8 mm时,轮轨垂向力及横向力、钢轨位移分别超过极限值170、80 kN以及2 mm;随着离缝量的增加,车辆垂向加速度、脱轨系数及轮重减载率均逐渐超过列车运行的极限值。针对轨道板上拱离缝提出了相应修复措施,通过采用植筋修复方案,使轨道板形变低于2 mm,弯曲应力降低至40 MPa以下,显著改善由离缝带来的不利影响,对提高列车运行的安全性,具有重要的现实意义。  相似文献   

4.
轨道板与水泥乳化沥青砂浆离缝是CRTSⅡ型板式无砟轨道的主要伤损形式之一,水泥乳化沥青砂浆具有支承、缓冲、传载等作用,离缝将影响无砟轨道的变形与受力。基于弹性地基梁体理论和有限元方法,建立了路基上CRTSⅡ型板式无砟轨道有限元模型,分析在温度荷载和自重作用下不同离缝长度以及产生离缝后CA砂浆层参数对轨道结构的影响。结果表明:轨道板的翘曲位移及纵向应力均随着离缝长度增大而增加;当离缝长度超过1.95 m时,轨道板的翘曲变形及纵向应力都急剧增大,建议轨道板与CA砂浆层离缝长度不宜超过1.95 m。  相似文献   

5.
充填层离缝是CRTSⅡ型板式无砟轨道结构主要的病害形式。在实地调研我国CRTSⅡ型板式无砟轨道充填层离缝病害的基础上,分析了CRTSⅡ型板式无砟轨道结构充填层离缝的主要种类、原因及危害。根据高速铁路无砟轨道结构特点,研究充填层离缝修复材料技术要求。结合现场实践给出了离缝修复工艺,并对离缝修复效果进行跟踪考察。  相似文献   

6.
为明晰线弹性模型与非线性损伤塑性模型在无砟轨道不同状态下的适用范围,研究层间离缝纵向扩展过程中轨道板在列车动荷载作用下的损伤萌生扩展规律,基于ABAQUS有限元软件建立CRTSⅠ型板式无砟轨道空间实体模型,以不同累积概率不平顺状态下的扣件支点压力作为荷载激励,分别采用线弹性模型与非线性损伤塑性模型描述轨道板混凝土应力-应变关系,对比分析整体轨道板在2种本构模型下的受力状态,分析其在轨道板-CA砂浆层层间离缝状态下的动力损伤规律。研究结果表明:在轨道结构正常状态下,各累积概率不平顺状态下的轨道板纵、横向拉应力水平较低,可采用线弹性模型简化计算;层间离缝状态下,轨道板上表面将承受较大拉应力而使轨道板受力进入塑性软化阶段,此时可采用非线性损伤塑性模型描述轨道板损伤的萌生、扩展过程。10%~90%累积概率不平顺状态下,轨道板损伤萌生所需离缝纵向长度处于820~890 mm之间,99%累积概率下仅需580 mm。轨道板损伤首先产生于第2组承轨台周围的轨下对应区域,随离缝纵向发展同时向板中与板边扩展直至贯通;轨道不平顺状态越差,轨道板损伤萌生与达到最大拉伸损伤所需离缝纵向长度越小。损伤所产生的塑性...  相似文献   

7.
轨道板与自密实混凝土层之间的板端离缝是CRTSⅢ型板式轨道的主要伤损型式之一,为分析板端离缝对路基上CRTSⅢ型板式轨道动力特性的影响,建立车辆-CRTSⅢ型板式轨道-路基垂向耦合振动模型,研究不同板端离缝长度对车辆和轨道系统动力响应的影响。研究结果表明:板端离缝将增大车辆和轨道结构的动力响应。当脱空长度超过1.54m时,轨道结构的垂向位移出现拐点,扣件系统上拔力接近允许限值10 kN,板端离缝区域附近的自密实混凝土层所受的垂向压应力增大28.75倍。板端离缝导致自密实混凝土层更易发生劣化,从无砟轨道耐久性方面考虑,建议当CRTSⅢ型板式轨道板端离缝长度达到1.54 m时应及时进行养护维修。  相似文献   

8.
建立了包含CRTSⅡ型轨道板与砂浆层离缝的无砟轨道结构和CRH2型3节车结构的车辆-轨道空间耦合动力学模型,模拟在不同轨道板与砂浆层离缝量条件下钢轨和轨道板动位移以及轮轨垂向力的变化情况,分析离缝对轨道动力响应的影响以及列车通过离缝区域时轨道变形以及回弹情况。结果表明:在通常状况下,车轮经过离缝区域时与同一节车车体中部通过时相比,钢轨与轨道板动位移存在较大差值,理论上可视为有载荷与无载荷状态的差值。采取在车体中部加装无载荷检测设备,将其检测结果与综合检测列车检测数据对比从而间接寻找轨道板离缝较大处所的方法,理论上是可行的。  相似文献   

9.
针对目前高速铁路板式无砟轨道离缝病害伤损检测中存在的不足,采用瞬态瑞雷面波法、地震映像法、地质雷达法、冲击回波法4种无损检测方法对CRTSⅢ型板式无砟轨道等比例模型进行对比试验,分析上述检测方法针对板式无砟轨道离缝检测的适用性与影响因素。试验结果表明,冲击回波法能够通过冲击响应强度与主频来表征介质阻抗差异,适用于板式无砟轨道离缝伤损检测。  相似文献   

10.
在夏季高温作用下,支承层斜裂贯通缝可能导致结构上拱变形,衍生次生病害。基于内聚力和塑性损伤理论建立CRTSⅡ型板式无砟轨道结构有限元模型并与现场实测结果对比验证模型的有效性,分析夏季高温作用下支承层斜裂缝导致的结构上拱变形、离缝、受力和伤损规律。结果表明,温度荷载作用下,斜裂缝一旦贯通,轨道结构变形急剧增大。随温度升高,支承层相互错动,CA砂浆层与支承层先离缝,随后轨道板与CA砂浆层离缝,轨道结构上拱变形。结构性能随温度演化过程可分为0~20℃的缓慢发展阶段、20~30℃的加速发展阶段和大于30℃的飞速破坏阶段。贯通斜裂缝位于板中,角度30°时,轨道结构变形达到最大值26 mm。建议温度大于30℃时,检修重点关注角度不大于45°的板中斜裂贯通缝。  相似文献   

11.
为研究循环温度荷载下无砟轨道结构层间离缝产生与扩展规律,以及离缝对轨道结构受力性能的影响,制作了三跨无砟轨道-简支梁桥结构1/4缩尺模型,开展了18次循环温度荷载试验。并在循环温度试验前后分别对结构进行了2次静力加载试验,对比分析结构体系受力特性发生的变化。试验结果表明:循环温度荷载作用下,梁端处轨道板与CA砂浆之间产生离缝,并向跨中呈“阶梯状”逐渐延伸,历经萌生、扩展和稳定三个阶段。随离缝长度增加,相同温度荷载下,梁体上拱度逐渐减小,而轨道结构上拱度逐渐增大,在离缝的萌生、扩展和稳定三个阶段,轨道结构的刚度呈现慢-快-慢的速度逐渐减小。经18次循环温度荷载作用后,轨道结构的刚度降低了14. 96%,无砟轨道-桥梁结构体系整体刚度降低了2. 52%。  相似文献   

12.
我国高速铁路无砟轨道无缝线路发展迅速,但随着列车的运营,轨道板与CA砂浆层之间常会出现离缝,这将对无砟轨道的长期服役性能产生一定的影响。以高速铁路多跨简支梁上CRTS Ⅰ型板为例进行分析,研究板边、板端、板角、板中4种典型CA砂浆离缝病害对轨道几何形位及对无缝线路受力变形情况的影响。研究结果表明:离缝病害作用下,随着桥轨间温差变大,轨道水平偏差增幅较大,轨道高低偏差最值偏大,并且板端病害对离缝区平顺性影响大。在温度荷载作用下含病害的轨道结构伸缩受力更加明显,尤其体现轨道板、底座板上,其中板边位置的病害受力变形最为明显。在列车荷载作用下在离缝病害区域轨道结构挠曲受力情况变化较大,其中板角及板端病害影响大。根据计算结果建议在无缝线路养护维修时着重检查轨道板及底座板下表面的情况,及要注意检修钢轨正下方病害情况。  相似文献   

13.
对成灌(成都—都江堰)线CRTSⅢ型板式无砟轨道离缝病害产生的原因进行了系统研究,并从底座板排水坡修复、离缝注浆修复和防水封闭修复3方面对病害修复工艺进行了系统优化。为保证修复效果,采用实时位移监测装置监测轨道板垂向、横向位移及底座板垂向位移,成功实现对轨道板离缝脱空程度的精确监测,使得离缝修复工艺更加高效、科学。  相似文献   

14.
在车辆荷载和温度作用下,CRTSⅢ型板式无砟轨道由于自密实混凝土层与底座板间产生离缝,发生应力集中和局部变形,对无砟轨道服役状态和使用寿命造成明显影响。基于ABAQUS有限元模型,计算车辆与温度不同荷载组合下,层间离缝横向和纵向发展对无砟轨道结构受力变形的影响,探究伤损演变规律和维修限值。研究结果表明:层间离缝宽度小于1.5m,轨道结构受力和变形的影响很小;离缝发展至两侧钢轨正下方后,轨道结构变形和应力均增大明显;离缝长度大于1.2m,对轨道板出现受拉裂缝和无离缝端上翘;正温度梯度荷载对轨道板弯折变形和自密实混凝土层纵横拉应力以及负温度梯度荷载对轨道板上翘和纵横拉应力均有叠加放大效应。  相似文献   

15.
王帅 《铁道建筑技术》2023,(1):117-120+147
我国西南山区地质情况较为复杂,山区高速铁路隧道内一般采用无砟轨道结构,无砟轨道在施工和服役过程中易受强降雨及地质条件影响,隧道仰拱下方极易积聚承压水,进而引发道床板出现开裂、上拱、离缝等病害。为提高地下水作用下隧道无砟轨道道床板的耐久性和平顺性,基于建立的隧道双块式无砟轨道有限元模型,分析了仰拱填充层假缝和道床板伸缩缝对齐处增设不同长度的土工布、仰拱填充层和道床板层间增设不同数量的胀锚螺栓对无砟轨道受力和变形的影响。研究结果表明:增设土工布能有效减少无砟轨道道床板裂缝的产生,对提高耐久性有利,建议跨缝铺设土工布长度不少于300 mm;增设胀锚螺栓能有效降低道床板的垂向位移,对无砟轨道服役的平顺性有利,建议每段道床板增设12根胀锚螺栓。  相似文献   

16.
CRTSⅢ型板式无砟轨道在我国高速铁路中得到了广泛应用,在长期列车荷载与温度等因素共同作用下,轨道板与自密实混凝土层的脱黏与离缝已成为该种轨道结构的典型病害。为研究时速400 km条件下,板边层间离缝对于车辆-轨道系统动力特性的影响,通过建立高速车辆-无砟轨道空间动力学模型,系统分析不同离缝程度对行车系统动态响应的影响。研究结果表明:离缝主要影响轨道结构振动,对车体振动和车辆运行平稳性影响不大;离缝扩张使得轨道板振动位移和振动加速度幅值显著增大,速度提高时其影响更为明显;离缝劣化容易提高轮重减载率,导致轮对振动加速度幅值增大,随着离缝继续扩展至轨下区域,轮轨接触状态逐渐恶化,严重时将危及高速行车的安全性。综合分析表明,既有高速铁路维修标准对时速400 km高速铁路具有一定适应性。  相似文献   

17.
为降低夏季持续高温季节高速铁路线路中纵连板式轨道板胀板的风险及危害性,采用有限元仿真分析方法,对温度作用下层间离缝高度对于轨道板稳定性的影响进行了分析研究。通过建立无砟轨道结构全要素精细有限元分析模型,分别研究了高度均匀离缝和高度不均匀离缝对轨道板温度上拱变形的影响规律。分析结果表明,在均匀离缝两端的轨道板以及不均匀离缝位置对应的轨道板温度上拱变形随着离缝值的增大而显著增大,严重时可能干扰正常运营。  相似文献   

18.
高速铁路无砟轨道结构病害类型及快速维修方法   总被引:4,自引:0,他引:4  
介绍无砟轨道病害类型,分析砂浆垫层与轨道板结构离缝等病害产生的原因及可能对轨道结构产生的危害.阐述无砟轨道结构病害快速维修和“可二次”维修性原则,以及维修材料选择原则.结合我国高速铁路的运营实际,提出砂浆层与轨道板结构离缝、砂浆层缺损、预埋套管伤损、混凝土伤损快速维修方法和施工步骤,在高速铁路无砟轨道结构中使用效果良好.  相似文献   

19.
水泥乳化沥青砂浆层离缝是CRTSⅡ型板式无砟轨道的主要病害。本文采用双线性黏结滑移模型表征轨道板与砂浆层的黏结关系,对推板时的层间传力规律进行理论分析;利用有限元方法,根据推板试验结果对层间参数进行拟合,研究推板时层间传力规律;基于黏结滑移模型,建立CRTSⅡ型板式无砟轨道三维有限元模型,分析极限温度梯度荷载作用下层间破坏规律。结果表明:温度梯度荷载作用下,层间的伤损主要产生在板边,与现场观察的离缝一致;层间黏结强度的增加能够减小层间伤损值及伤损区域,黏结强度小于0.025 MPa时在正温度梯度荷载作用下轨道板容易出现上拱现象;该层间模型中的弹性段长度δ_1值对层间传力规律影响较大,δ_1值的增加能够有效减小层间伤损值及伤损区域。  相似文献   

20.
针对CRTSⅡ型板式无砟轨道砂浆层离缝识别存在的技术难点,提出一种基于激光扫描技术的非接触式检测方法,研发出依靠人力推动前进的高速铁路无砟轨道离缝智能检测小车。小车在检测过程中实时显示检测位置的离缝值和轨道板编号,自动完成侧向挡块避障,检测完成后数据无线上传至云服务端,同时在本地自动生成统计报表。室内和现场试验表明,小车离缝值检测精度可达±0.1 mm,路基地段检测速度为5.5 km/h,桥梁地段检测速度为4 km/h,满足铁路工务部门天窗时间离缝检测快速、高效的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号