首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李显生  许洪国 《汽车工程》1996,18(6):355-359
将新式主动横向稳定器安装在中型货画的前轴和后轴,通过液压缸与车架连接。本文研究了该稳定器对降低车身侧倾和提高舒适性的效果。仿真分析和实车试验表明,采用前轮转角前馈控制方法,汽车转向时,稳定器产生反侧倾力矩,大幅度地降低车身侧倾。  相似文献   

2.
汽车横向稳定器是汽车悬架系统的重要件之一,不仅提高了悬架系统抗侧倾的能力,而且较好地改善了汽车的乘坐舒适性和操纵稳定性。本文对汽车横向稳定的设计原则、匹配方法及常见的1型和2型稳定器的计算方法等进行了定性或定量的分析总结并给出了详细的计算公式,同时对如何更好地提高汽车的侧倾提出了设想和建议。  相似文献   

3.
提高商用车操纵稳定性的研究   总被引:2,自引:0,他引:2  
李显生  高延龄  王云鹏 《汽车工程》2000,22(3):197-200,191
本文研究主动横向稳定器降低车身侧倾向,以及与后轴转向系统协调控制时,提高商用车操纵稳定性的效果,实车试验表明,采用前轮转角前馈控制方法,汽车转向时稳定器产生反侧力矩,大幅度地降低车身侧倾;当与后轴转向系统协调控制时,能够提高商用车的操纵稳定性。  相似文献   

4.
针对装有被动横向稳定杆的车辆在高速大转角转向时容易发生侧翻及在直线行驶时乘坐舒适性变差的问题,设计了一种开关式主动横向稳定杆装置。基于整车6自由度模型设计了线性二次型最优控制器对车辆转向时的侧倾进行控制;直线行驶时,主动横向稳定杆处于"OFF"状态,降低悬架刚度,提高车辆舒适性。采用时域与频域仿真验证了该装置的有效性,并通过台架试验对基于粒子群优化的线性二次型最优侧倾控制策略进行了验证。  相似文献   

5.
正随着人们对乘坐舒适性要求的提高,近现代车辆悬架一般设计得比较软,在高速行驶转向时,车身会产生很大的横向侧倾和横向角振动。因此,杆式横向稳定器应运而生,并以成本低和结构简单而得到广泛应用。横向稳定杆对悬架侧倾角刚度的分配有很大影响,一般要求当侧向惯性力等于0.4倍的车重时,车身的侧倾角小于6度,同时为了满足汽车稍有不足转向特性的要求,前后悬架的侧倾角刚度比值一般取  相似文献   

6.
顾严平  彭莫 《汽车技术》1996,(2):13-17,60
汽车横向稳定器是汽车的重要部件,特别是对于乘坐舒适性和操纵稳定性要求都很高的轿车,则更是必需的元件之一。本文提出了汽车稳定器的设计规范,并建立了多种结构形式稳定器的计算方法。  相似文献   

7.
鉴于车辆簧上质量的振动和车轮的振动耦合,特别是转向工况下,车轮转向角对车辆侧倾的影响,为减小车辆的侧倾并有效抑制车辆的振动,建立了带主动悬架的整车模型,并运用微分几何理论设计了侧倾及减振控制律,对整车模型进行解耦。经过解耦后,簧上质量的俯仰、侧倾和垂向运动互相独立;车轮转角对车辆侧倾的影响得到有效的抑制。仿真结果表明,采用微分几何解耦后,车辆的侧倾角、俯仰角和垂向振动以及横摆角速度的超调量皆大幅度地减小,车辆乘坐的舒适性和转向的稳定性显著提高。  相似文献   

8.
鉴于车辆簧上质量的振动和车轮的振动耦合,特别是转向工况下,车轮转向角对车辆侧倾的影响,为减小车辆的侧倾并有效抑制车辆的振动,建立了带主动悬架的整车模型,并运用微分几何理论设计了侧倾及减振控制律,对整车模型进行解耦。经过解耦后,簧上质量的俯仰、侧倾和垂向运动互相独立;车轮转角对车辆侧倾的影响得到有效的抑制。仿真结果表明,采用微分几何解耦后,车辆的侧倾角、俯仰角和垂向振动以及横摆角速度的超调量皆大幅度地减小,车辆乘坐的舒适性和转向的稳定性显著提高。  相似文献   

9.
杨秀红  王晓红 《汽车运输》2000,26(10):20-24
LS400轿车采用电子控制的主动空气悬架系统。其空气弹簧刚度、汽车高度及减振器阻尼大小均可根据驾驶条件自动控制,从而抑制了车辆侧倾、制动时前部点头和高速行驶时后部下沉等汽车姿态的变化,明显提高了乘坐的舒适性和操纵稳定性。本文详细阐述了空气悬架的结构、工作原理以及系统的控制功能。  相似文献   

10.
文章首先进行了主动横向稳定杆结构和应用现状分析,研究了主动横向稳定杆核心零部件和系统的先进技术进展,接着分别介绍了汽车液压互联系统、电磁悬架、奔驰ABC悬架技术;研究车身侧倾控制技术更重要的意义在于降低车轮的侧倾转向角和侧倾外倾角,进而使转向更加中性并且提升汽车在弯道的极限性能。  相似文献   

11.
车轮的平衡度对汽车转向和行驶的性能至关重要。如果车轮不平衡,则在其高速旋转时,不平衡的质量将引起车轮上、下跳动和横向振摆,不仅影响汽车的行驶平顺性、乘坐舒适性和操纵稳定性,而且车辆难以控制,也影响了汽车行驶的安全性。  相似文献   

12.
悬架系统是一个复杂的动力学系统,其模型的精确性、合理性对主动悬架的研究起到决定性作用.为进一步满足车辆乘坐舒适性的要求,以整车模型为研究对象,运用八板块方法进行动力学分析,根据牛顿运动学定律推导出悬架各部分的力学微分方程,从而建立了包含俯仰运动模型、侧倾运动模型和转向运动模型的整车模型,为车辆主动悬架的进一步研究提供了理论基础与依据.  相似文献   

13.
为顺应汽车底盘电子电气(E/E)架构集中化发展趋势,并解决传统电控空气悬架系统中悬架刚度调节范围窄、侧倾稳定性欠佳等问题。本文中以具有电机式主动横向稳定器的新型电控空气悬架系统为被研究对象,首先利用Matlab/Simulink搭建电控空气悬架系统整车动力学模型与电机式主动横向稳定器模型,开发基于模型设计的新型电控空气悬架系统集成控制策略;然后开发基于英飞凌32位TC275主控芯片的并行多核电子控制单元,并利用转向盘角阶跃输入工况和双移线工况开展离线仿真与硬件在环试验研究。相关研究结果表明,新型电控空气悬架系统集成控制策略及并行多核电子控制单元可改善车辆操纵稳定性,并有效提高车辆抗侧倾性能。  相似文献   

14.
EPS与主动悬架系统自适应模糊集成控制的仿真与试验研究   总被引:1,自引:0,他引:1  
在建立的汽车整车主动悬架和EPS动力学模型(包含转向运动、俯仰运动和侧倾运动等模型)的基础上,运用自适应模糊控制方法,利用车身姿态的变化动态地调节主动悬架控制器和EPS控制器的输出,实现了对EPS和主动悬架系统的集成控制。为了验证控制系统的可行性和有效性,分别进行了仿真和实车道路试验。结果表明,集成控制显著提高了汽车的行驶平顺性和操纵稳定性,整车综合性能明显优于传统的悬架和转向系统。  相似文献   

15.
汽车侧倾稳定主动控制系统的仿真研究   总被引:2,自引:0,他引:2  
在ADAMS/Car下建立了前、后悬架都装有主动横向稳定杆的95自由度虚拟整车模型.采用模糊PID控制策略,在MATLAB/Simulink环境中对车辆抗侧倾性能进行了联合仿真,实现了PID控制过程中参数的在线整定.仿真结果表明,模糊PID控制具有较强的自适应能力和抗干扰能力,可有效减小车身侧倾角,在保证乘坐舒适性的同时提高了车辆的行驶稳定性.  相似文献   

16.
每套汽车悬架系统都拥有两个目标:更好的乘坐舒适性和最佳的车辆操控性。舒适是通过将汽车中的乘客与颠簸和坑洼等路面干扰相隔离而实现的。操控是通过避免车身转向过度和侧倾,并使轮胎和地面保持良好的接触而实现的。但遗憾的是,这两个目标是矛盾的。对于豪华轿车来说,其悬架系统的设计通常强调舒适性,结果导致车辆在行驶、转弯和制动过程中会转向过度并倾斜。  相似文献   

17.
汽车主动悬架与电动助力转向系统自适应模糊集成控制   总被引:5,自引:0,他引:5  
建立了包含转向运动模型、俯仰运动模型和侧倾运动模型的汽车整车模型,在设计了电动助力转向系统PD控制的基础上,构建了基于自适应模糊控制的汽车主动悬架与电动助力转向系统集成控制器,当控制系统偏差变小或变大时,调整因子总能保证系统稳定,便于工程应用。计算结果表明,该自适应模糊集成控制策略,既保证了车辆操纵轻便性,又显著提高了整车操纵稳定性、安全性和行驶平顺性等整车综合性能。  相似文献   

18.
乘坐舒适性是决定乘客对智能车辆接受度的重要因素之一。为了提升智能车辆的舒适性,服务智能驾驶控制算法的设计和优化,开展了基于乘客主观感知的实车乘坐舒适性试验,试验中驾驶人驾驶传统车辆执行多次换道操作,获取了60名被试乘客对换道操作的舒适性评价数据,并采集了车辆的运动数据。选取换道时横向最大加速度、回正时横向最大加速度、横向最大加加速度、横向加速度转换幅值以及横向加速度转换频率这5个车辆运动参数作为研究对象。采用二元Logistic回归单因素分析法分析了这5个车辆运动参数对乘坐舒适性的影响,采用接收者操作特征(ROC)曲线分析法为不同晕车易感性的乘客分别确立了这5个车辆运动参数的舒适性阈值,并根据岭回归分析法确定了不同参数对乘坐舒适性的影响权重。结果表明:所选取的5个车辆运动参数对乘坐舒适性具有显著影响,易晕乘客的舒适性阈值小于不易晕乘客的舒适性阈值,在换道过程中,换道时横向最大加速度、回正时横向最大加速度和横向加速度转换幅值是影响乘坐舒适性的主要因素。最后根据车辆运动参数和乘客生理特征参数建立了基于动态时间归整(DTW)和K最近邻(KNN)算法的乘坐舒适性预测模型,该模型对乘坐舒适性的预测准确率为84%,可用于智能车辆控制算法的舒适性判断。  相似文献   

19.
针对车辆在侧向加速度与路面不平干扰时,容易发生侧翻和影响乘坐舒适性的问题,本文中设计了一种主动横向稳定杆装置。为满足车辆在各行驶工况下的性能要求,提出了采用混杂控制方法对不同工况下的车辆进行控制。在紧急转向或不平路面工况时,为防止车辆侧翻和提高车辆的乘坐舒适性,分别利用线性二次型最优控制理论设计了控制器,并采用微粒群优化算法对控制器的权系数进行优化。在此基础上建立了整车控制模型,并通过台架试验验证所建模型的正确性。最后对采用主动横向稳定装置控制的车辆进行了一系列时域和频域仿真,结果表明,该方法能根据车辆不同的行驶工况有效避免车辆侧翻,且明显改善了车辆的乘坐舒适性。  相似文献   

20.
为挖掘智能车避撞潜力,基于五次多项式构建含侧向加速度约束的避撞参考路径,基于预瞄转向几何理论实现车辆转向控制,利用线性二次型调节器(LQR)得到期望纵向加速度,在避撞结构基础上,基于碰撞时间(TTC)和跟车时距(THW)预判行车风险,以最大加速度和平均加速度评价主动避撞的乘坐舒适性,以最大横向位置误差和航向角误差评价转向控制路径跟踪精度。不同工况下仿真结果表明,该方法转向稳定性和路径跟踪精度较高,且兼顾了避撞安全性和乘坐舒适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号