首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
随着纯电动汽车市场的进一步拓展,为了满足北方客户在寒冷天气下的采暖需求,并缓解低温环境下纯电动汽车续驶里程的衰减,需要对纯电动汽车在低温下的整车热管理控制策略进行更加贴合使用场景的优化。通过针对某纯电动车型在低温环境下不同使用场景中余热热泵与空气源热泵热管理控制策略的研究与实车验证,将热泵热管理系统的有效使用环境温度下限从-15℃拓展到了-20℃,并且实现了该车型在-7℃低温环境下CLTC工况续驶里程衰减率达到31.2%的优秀水平。  相似文献   

2.
文章针对在开发的某款电动汽车搭建了其热泵空调系统仿真分析平台,利用1D和3D耦合分析的方法对乘员舱温度进行了预测,判断该热泵系统是否满足整车采暖的需求,并对不同环境温度下的空调系统性能进行了对比分析。结果表明,采用该热泵系统在-10℃环境温度下脚部平均温度达到16.2℃,未能满足-10℃的整车采暖要求,但能效比达到了2.9,辅助1KWPTC后能够满足整车采暖要求;随着环境温度的降低,系统的制热量和压缩机功耗降低,系统COP增加。  相似文献   

3.
空调系统的性能对纯电动汽车续航里程具有重要影响,在对采用不同制冷剂和压缩机的电动汽车热泵空调系统进行分析比较的基础上,设计和研制了一种采用二级压缩喷射热泵的电动汽车热泵空调系统,并与PTC采暖方式进行了实车对比试验。结果表明,与PTC采暖系统相比,新型热泵空调系统能够节能15%以上,整车续航里程延长15km以上。  相似文献   

4.
动力电池作为纯电动汽车的唯一能量源,其性能直接影响整车性能.动力电池性能易受温度影响,尤其在低温环境下电池充放电能力受限,进而造成纯电动汽车里程衰减.本文以某纯电动汽车为研究对象进行常温及-7℃低温CLTC工况试验,分析常温及低温整车能量管理策略,从整车开发层面提出降低纯电动汽车低温里程衰减的措施及建议.  相似文献   

5.
空调系统是整车重要的组成部分和能耗部件。纯电动汽车在低温环境下续驶里程大幅缩减,热泵空调系可提升整车电能利用效率,但热泵空调系统相对复杂,增加了布置难度。文章通过热泵系统关键零部件及管路走向布置、静态及动态间隙校核、装配工艺性分析和美观性等多个维度,结合具体整车系统案例,总结了热泵空调系统总布置设计时的注意因素和遵循原则,为热泵空调系统开发提供参考依据,降低开发周期。  相似文献   

6.
介绍了一套完整的主动进气格栅整车热管理控制策略平台架构和开发流程,基于多款纯电动汽车试验验证,充分利用大数据研究、理论分析、高低温环境舱试验匹配等手段,完成了对主动进气格栅整车热管理控制策略的正向开发,并结合纯电动车型热泵空调系统完成了整车能耗贡献量对比试验分析。研究表明,新开发的主动进气格栅整车热管理策略在常温、低温环境下均有较好的节能收益,高温环境下可及时响应整车热管理系统的散热需求,同时具备平台化应用的可行性。  相似文献   

7.
郭会聪  昃强 《汽车电器》2010,(11):25-28
介绍燃油加热系统在长城汽车某款电动汽车上的应用,实现了此款纯电动汽车的驾驶室采暖及驻车加热功能,并通过CAE仿真及整车试验验证其除霜除雾性能。  相似文献   

8.
以搭载三元锂电池的纯电动汽车为研究对象,对某纯电动汽车动力电池系统的低温性能进行试验研究,结果表明:续驶里程在-10℃时相比25℃时下降46%,电池荷电量为30%,-10℃时的峰值放电功率比25℃时衰减了51%,电池容量衰减11.6%。为低温环境下纯电动汽车的性能研究提供一定的依据。  相似文献   

9.
随着汽车排放法规日趋严格,汽车工业正在加速推进电动汽车平台的开发,如纯电动汽车(BEV)和插电式混合动力电动汽车(PHEV)。因为这些汽车的可用余热是有限的,需要采用额外的热源如电加热器来实现座舱加热。热泵系统是一种提高电动汽车在低温环境下续航里程的技术。介绍了一款高效蒸汽喷射热泵系统,其应用在丰田2017款Prius Prime汽车上,在无电加热器辅助的情况下也可以有好的低温座舱加热性能和除湿效果。  相似文献   

10.
纯电动汽车空调制热系统主要采用结构简单、升温快的PTC热敏电阻,但是使用过程会消耗大量的电能,严重影响车辆的续航里程.为了减小冬季空调采暖对续航的影响,同时提高采暖性能,可以增加辅助加热装置.本文对某配备柴油辅助加热装置的纯电动车型的采暖性能进行试验分析,试验结果表明,辅助加热装置提高车辆采暖性能的同时能大幅提升车辆的...  相似文献   

11.
通过对纯电动汽车动力电池组风冷空调系统的试验研究,全面掌握电池组高温环境中(+35℃--+45℃),和不同车速状态下电池组温度的控制,电池组的实际工作温度既能满足整车充放电的正常工作也可以达到增加电池组工作寿命的目的,并对电池组风冷空调系统的温度控制问题的解决提供一种新的思路和方法。  相似文献   

12.
本文对国内外几款典型的纯电动汽车的空调系统构型方案进行了解析,分析了其构型的特点,为国内电动汽车的开发过程中的空调方案制定提供指导。采用电机余热加热乘员舱、热泵系统等方式可减少能量的消耗,提高纯电动汽车的续驶里程,热泵系统以其较高的能效比将成为未来电动汽车空调系统的一个重要发展方向。  相似文献   

13.
利用电动汽车热泵空调试验系统,测试了热泵空调系统制热模式从启动至稳定过程中,不同环境温度及压缩机转速下系统高压侧压力、低压侧压力、压缩机出口温度、车外换热器进口温度、车室内温度随时间变化的关系,并分析了环境温度及压缩机转速对电动汽车热泵空调制热模式启动性能的影响。试验表明,环境温度越低,电动汽车热泵空调系统未启动时平衡压力越低,启动后达到稳定状态的时间越长,热泵空调系统制热量越低;压缩机转速越高,系统达到稳定状态的时间越短,热泵空调系统制热量越高。  相似文献   

14.
本文以纯电动汽车为研究对象,开展了集体样车与同一样车的充电性能分析试验,通过试验数据结果,对整车充电控制策略、影响充电性能的关键技术指标等相关内容进行分析。试验结果表明:在低温环境下所有样车都可以正常启动交流充电,而在低温与常温车辆充电电量衰减比、充电时间衰减比略有差异;在同一样车的充电性能分析试验中,分析了低温与常温条件下充电电流趋势、电池输入电流、电池温度、最大充电电流的不同。  相似文献   

15.
为探究低温环境下电动汽车的能量损耗和部件工作效率,以实现整车能量结构优化,考虑电动汽车2种常见使用场景,设计单次续驶和分段续驶2种测试工况,在-10℃和-20℃条件下进行能量流测试,建立了能量流分析模型,定量分析了低温条件下整车能耗和动力电池等主要部件的效率及能耗特性,探明了电加热器的高能耗和能量回收能力受限是导致低温续驶里程降低的主要因素。  相似文献   

16.
空调采暖性能试验,往往通过环境仓动态试验或现地道路试验,为保持试验一致性,环境仓中的环境一致性更好,但需要充分考虑现地实际情况,为了在试验室更精准地模拟低温条件下空调采暖试验,针对目前不同区域道路阻力来源对试验室模拟空调试验结果造成的影响进行分析及研究,使用同一台样车选用襄樊常温阻力及黑河低温阻力,跟现地低温空调采暖试验结果比较,发现低温滑行阻力试验结果与实际道路试验结果更加吻合。  相似文献   

17.
电动汽车热管理已成为保障车辆宽温域环境适应能力、电池热安全和乘员舱热舒适性等方面的关键技术,同时也对电动汽车的能耗,特别是高低温环境下的整车能耗有着显著影响。随着车辆电气化和智能化的快速发展,与传统汽车相比,电动汽车热管理技术和发展路线在动力系统、空调系统等子热力系统和整车层面都呈现出了明显的差异和巨大的进步。综述了国内外电动汽车热管理技术领域重要的研究进展,阐述了电池、电机、热泵空调等子系统和整车集成热管理系统的技术进步,总结了当前电动汽车热管理亟待突破的技术重点和未来发展趋势。  相似文献   

18.
针对动力电池在低温环境下放电能力下降带来的性能限制,以某款搭载了额定容量为271Ah磷酸铁锂电池的纯电动汽车为研究对象,设计了蓄电池模块低温放电容量试验和低温环境电池动态电压测试,探究动力电池的低温性能表现及其对整车行驶过程的影响。试验数据表明,相比于常温下动力电池的放电性能,低温环境下电池放电容量及电压显著下降,由此造成的放电电流限制对车辆行驶造成了一定的影响。  相似文献   

19.
为研究用户习惯对整车在低温环境下的续航里程的影响,搭建了整车能耗解析测试系统,基于某上市车型进行环境仓转鼓测试,研究了纯电动乘用车在低温环境下的动力电池放电特性及整车能耗特征,分析了用户使用习惯对整车续航里程的影响。基于测试数据,精确分析了整车能量流向分配及损耗情况,并针对不同用户习惯及环境温度下整车及各部件的能耗差异、动力电池放电量差异进行了对比分析。结果表明:低温环境下整车续航里程与出行特征、环境温度均存在明显的关联;以上、下班通勤用户单次出行里程约为29 km(基于中国工况)为例,在-15℃环境下多天累计续航里程比单次行驶的极限续航里程低15.1%;环境温度降低,车辆续航里程也减小,在-25℃环境下车辆单次极限续航里程相比-15℃环境下降低了16.1%。针对续航里程变化的原因和规律,分别从电池放电量差异及电驱动系统、空调系统、低压电器能耗差异等方面进行对比分析,从而精确定位了整车能耗优化的入手点,通过优化电池热管理、提升部件工作效率等技术路径以降低整车能耗,为提升车辆低温环境下的续航能力提供理论指导和数据参考。  相似文献   

20.
纯电动大巴空调冬季制热是目前行业普遍关注的焦点问题,受大巴空调厂家技术影响,大部分电动空调热泵制热在环境温度0℃左右将无法启动,所以目前行业冬季制暖主要采用燃油炉或PTC加热方式。燃油炉与PTC加热能耗高,严重影响整车续航里程。热泵大巴空调可实现-15℃正常热泵制热,补气增焓技术可实现-25℃正常热泵制热。另外,在冬季制热时,暖风从上部的风道往下吹,大部分热风下不去,造成了车厢上部温度高,脚部温度过低,非常影响舒适性。通过从上部风口引一些风道到脚部的方式,提高车厢底部的热风循环,提高车厢热泵制热的舒适性,从而验证了大巴车厢底部出风对热泵空调制热效果的影响。综合上述,对热泵空调在低温地区冬季热泵制热效果及节能效果进行对比测试,通过对比热泵空调和电加热器的温升速率、耗电量和舒适性等参数,可得知热泵空调升温速度快、温控精度高、耗电量少,变频热泵空调更舒适、更节能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号