首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green’s second identity to the potential functions and appropriate Green’s functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.  相似文献   

2.
Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.  相似文献   

3.
The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are examined for the twin cylinders. In both cases, the twin cylinders are starting from rest and ultimately moving with the same constant speed through an accelerating process. Assuming that the fluid is inviscid and incompressible and the flow to be irrotational, the integral Laplace equation can be discretized based on the boundary element method. Fully-nonlinear boundary conditions are satisfied on the unknown free surface and the moving body surface. The free surface is traced by a Lagrangian technique. Regriding and remeshing are applied, which is crucial to quality of the numerical results. Single circular cylinder and elliptical cylinder are calculated by linear method and fully nonlinear method for accuracy checking and then fully nonlinear method is conducted on the twin cylinder cases, respectively. The generated wave elevation and the resultant force are analysed to discuss the influence of the gap between the two cylinders as well as the water depth. It is found that no matter the kind of distribution, when the moving cylinders are close to each other, they suffer hydrodynamic force with large absolute value in the direction of motion. The trend of force varying with the increase of gap can be clearly seen from numerical analysis. The vertically distributed twin cylinders seem to attract with each other while the horizontally distributed twin cylinders are opposite when they are close to each other.  相似文献   

4.
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others.  相似文献   

5.
In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground excitation. The contained liquid is assumed incompressible, inviscid and has irrotational motion. To estimate the seismic response, the method of superposition of modes has been applied. To analyze the rigid tank response, Laplace's equation is considered as the governing equation of the fluid domain, in both time and frequency domains. The boundary element method (BEM) is employed to evaluate the natural modes of liquid in a cylindrical tank. To gain this goal, the fluid domain is divided into two upper and lower parts partitioned by the baffle. Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid have been considered.  相似文献   

6.
Wave diffraction of two concentric porous cylinders with varying porosity was studied by using an analytical method based on eigenfunction matching.The fluid domain around the cylinders is divided into three sub-domains and in each sub-domain an eigenfunction expansion of the velocity potential is obtained by satisfying the Laplace equation,the boundary conditions on the free surface and on the sea bed.The unknown coefficients of eigenfunction expansions are determined by boundary conditions on the porous hulls.In the paper,the boundary conditions are based upon the assumption that the flow in the porous medium is governed by Darcy’s law.Two porous-effect parameters applied on two porous cylinders are functions of the vertical coordinate instead of the constant.Wave loading on the outer and inner cylinder is presented in the numerical results.  相似文献   

7.
This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.  相似文献   

8.
A three-dimensional time domain approach is used to study the coupled motions of two ships with forward speed in waves. In this approach, the boundary condition is satisfied on the mean wetted hull surface of the moving bodies and the free surface condition is linearized. The problem is solved by using a transient free-surface Green function source distribution on the submerged hulls. After solving the response amplitude operator, the method of spectral analysis is employed to clearly express the motion energy spectrum and significant amplitude of two ships. For verifying the code, two same circular cylinders at beam wave are selected to calculate coupled motions by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems.Two Wigley ships of different sizes with the same forward speed are chosen for numerical calculation of the interaction effect, and some useful suggestions are obtained for underway replenishment at sea.  相似文献   

9.
The interaction of two underwater explosion bubbles was mathematically analyzed in this paper. Based on the assumption of potential flow, high-order curved elements were used to discretize the boundary integral equation and solve it. Assuming that gas inside the bubble follows the isentropic rule, the Euler-Lagrange method was used to trace the evolution of the bubble, and when calculating the singular integral, the singularity of the double-layer singular integral was eliminated by reconstructing a principal-value integral of double-layer potential so that a more precise result could be obtained. Elastic mesh technique (EMT) was also used when tracing the evolution of the bubble interface, and numerical smoothing wasn't needed. A comparison of calculations using this three-dimensional model with results of the Reyleigh-Plesset bubble model shows that the three-dimensional model and calculation method in this paper is practical. This three-dimensional model was applied to simulate the interaction of two bubbles under the action of gravity, and the dynamic characteristics of two bubbles near the surface was also analyzed. Bubbles influenced by surface effects and gravity present severe non-linearity. This paper provides a reference for research into the dynamics of multi-bubbles.  相似文献   

10.
The surface wave generated by flow around a ship hull moving near free surface of water is simulated numerically in this study. The three-dimensional implicit finite volume method(FVM) is applied to solve Reynolds averaged Navier-Stokes(RANS) equation. The realizable k-ε turbulence model has been implemented to capture turbulent flow around the ship hull in the free surface zone. The volume of fluid(VOF) method coupled with the Stokes wave theory has been used to determine the free surface effect of water. By using is a six degrees of freedom model, the ship hull’s movement is numerically solved with the Stokes wave together. Under the action of Stokes waves on the sea, the interface between the air and water waves at the same regular pattern and so does the pressure and the vertical velocity. The ship hull moves in the same way as the wave. The amplitude of the ship hull’s heave is less than the wave height because of the viscosity damping. This method could provide an important reference for the study of ships’ movement, wave and hydrodynamics.  相似文献   

11.
In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The structure consists of two perforated vertical thin barriers creating what can be called a wave absorbing chamber system. The barriers are surface piercing, thereby eliminating wave overtopping. The problem of the interaction of obliquely incident linear waves upon a pair of perforated barriers is first formulated in the context of linear diffraction theory. The resulting boundary integral equation, which is matched with far-field solutions presented in terms of analytical series with unknown coefficients, as well as the appropriate boundary conditions at the free surface, seabed, and barriers, is then solved numerically using MDBEM. Dissipation of the wave energy due to the presence of the perforated barriers is represented by a simple yet effective relation in terms of the porosity parameter appropriate for thin perforated walls. The results are presented in terms of reflection and transmission coefficients. The effects of the incident wave angles, relative water depths, porosities, depths of the walls, and other major parameters of interest are explored.  相似文献   

12.
作者把计算回转体绕流的Landweber方法推广到带有运转螺旋桨时回转体绕流问题的计算,导出了附加螺旋桨影响后的物面速度分布的第一类Fredh-olm积分方程。对该方程的迭代求解则用新的加速迭代公式替代常用的Land-weber迭代公式。通过对带与不带运转螺旋桨时回转体上压力差的积分可以得到推力减额。两条模型(分别在风洞、水池的试验)的数值例子表明:本方法的迭代速度要比Landweber迭代公式快,而计算得的推力减额和表面压差分布与试验结果的一致性很好,优于Huaug用Hess-Smith方法算得的结果。  相似文献   

13.
船体曲线曲面的B样条光顺   总被引:4,自引:0,他引:4  
根据给定的船体型值点,以三次非均匀B样条为光顺函数,采用整体光顺方法,以应变能最小、曲率变化均匀为准则,以控制点为未知量,建立最优化问题的约束方程并求解,实现船体曲线的光顺。根据曲线的相对曲率线图,将优化后的光顺B样条船体曲线与插值B样条曲线、传统最小二乘法逼近曲线进行了比较。构[循规蹈矩本曲面,以UV方向上的单参数曲线族或站线、水线、纵剖线方向的截面曲线族为研究对象,以曲线族的应变能之和最小为准则,进行光顺处理,最后,以NURBS为统一数学表达式,根据光顺后得到的控制点网络,应用双三次非均匀有理B样条得到光顺的船体曲面。  相似文献   

14.
水下爆炸气泡对水面舰船载荷的数值研究   总被引:2,自引:0,他引:2  
文章基于势流理论采用边界积分法求解拉普拉斯方程,阐述水面舰船附近三维爆炸气泡脉动过程的计算模型.通过数值计算获得气泡运动规律的同时,着重研究爆炸气泡对船体的载荷.计算结果揭示出爆炸气泡对水面舰船的整体破坏作用.  相似文献   

15.
船舶航行时水动力系数求解二维半理论的稳定算法   总被引:4,自引:2,他引:2  
段文洋  马山 《船舶力学》2004,8(4):27-34
给出一种基于高速细长体理论的预报排水型船在波浪上运动水动力求解的数值方法.在该理论的定解条件中,自由面条件是三维的,而控制方程和物面条件则是二维的,所以称为二维半理论.采用二维时域自由面Green函数将定解问题转化为船体切片上的积分方程,进而求解有航速下的船舶水动力问题.重点讨论了水动力计算的稳定算法.对ITTC建议的标准WIGLEY船型作了理论预报,并与DELFT大学的实验结果和用STF切片法的理论预报结果作了比较.比较结果表明,本文提出的二维半理论的预报结果与试验结果相当接近,而计算效率和切片法相当,且大大改善了理论预报的精度.  相似文献   

16.
开发了对浮式平台系统进行耦合动态分析的全时域程序。采用二阶时域方法计算水动力荷载,在此方法中,对物面边界条件和自由水面边界条件进行泰勒级数展开,利用Stokes摄动展开分别建立相应的一阶、二阶边值问题,而且此边值问题的计算域不随时间变化。采用高阶边界元方法计算每一时刻流场中的速度势,利用四阶预报校正法对二阶自由水面边界条件进行数值积分。在自由表面加入一个人工阻尼层来避免波浪的反射。对于系泊缆索/立管/张力腿的动力分析,在一个总体坐标系中对控制方程进行描述,采用基于细长杆理论的有限元方法进行求解。在耦合动态分析中,采用Newmark方法对平台和系泊缆索/立管/张力腿的运动方程同时进行求解。利用开发的耦合分析程序对一个桁架式Spar平台的运动响应进行了数值模拟,给出了平台的位移和系泊缆索/立管上端点的张力,并得到了一些重要结论。  相似文献   

17.
A time-domain higher-order boundary element method for seakeeping analyses in the framework of linear potential theory is newly developed. Ship waves generated by two modified Wigley models advancing at a constant forward speed in calm water or incident waves and the resultant radiation and diffraction forces are computed to validate this code. A rectangular computational domain moving with the same forward speed as the ship is introduced, in which an artificial damping beach is installed at an outer portion of the free surface except the downstream side for satisfying the radiation condition. The velocity potential on the ship hull and the normal velocity on the free surface are calculated directly by solving the boundary integral equation. An explicit time-marching scheme is employed for updating both kinematic and dynamic free-surface boundary conditions, with an embedding of a second-order upwind difference scheme for the derivative in the x-direction to stabilize the calculation. Extensive results including the exciting forces, added mass and damping coefficients, wave profiles, and wave patterns for blunt Wigley and slender Wigley hulls with forward speed are presented to validate the efficiency of the proposed 3D time-domain approach. The corresponding physical tests of the radiation and diffraction problems in a towing tank are also carried out. Computed numerical results show good agreement with the corresponding experimental data and other numerical solutions.  相似文献   

18.
采用船型优化方法就超大型集装箱船10 000TEU的能效设计指数(EEDI)进行优化.文中以降低对主机功率的需求、提高能效设计水平为目标,优化该超大型集装箱船的阻力性能.优化时利用平移法和径向基函数方法进行船体曲面重构,并分别采用基于Rankine源非线性势流理论和边界层动量积分计算兴波阻力和摩擦阻力,最后同时使用遗传算法(NSGA-Ⅱ)和序列二次规划算法(NLPQL)在设计空间中探索满足约束条件的阻力最优船型.结果表明,通过该优化方法获得的最优船型,其能效设计指数优化程度明显,能够满足现阶段IMO对新造集装箱船计及折减系数后的强制要求.  相似文献   

19.
A linearized two-dimensional diffraction problem in a two-layer fluid of finite depth was solved for a general floating body and relevant wave-induced motions were studied. In a two-layer fluid, for a prescribed frequency, incident waves propagate with two different wave modes. Thus the wave-exciting forces and resulting motions must be computed separately for each mode of the incident wave. The boundary integral equation method developed by the authors in the Part-1 article was applied to directly obtain the diffraction potential (pressure) on the body surface. With the computed results, an investigation was carried out on the effects of the fluid density ratio and the interface position on the wave-exciting forces on the body and the motions of the body, including the case in which the body intersects the interface. By a systematic derivation using Green's theorem, all the possible reciprocity relations were derived theoretically in explicit forms for a system of finite depth; these relations were confirmed to be satisfied numerically with very good accuracy. Experiments were also carried out using water and isoparaffin oil as the two fluids and a Lewis-form body. Measured results for the sway- and heave-exciting forces and the heave motion were compared with the computed results, and a favorable agreement was found.  相似文献   

20.
In this paper we have investigated the reflection and the transmission of a system of two symmetric circular-arc-shaped thin porous plates submerged in deep water within the context of linear theory. The hypersingular integral equation technique has been used to analyze the problem mathematically. The integral equations are formulated by applying Green's integral theorem to the fundamental potential function and the scattered potential function into a suitable fluid region, and then using the boundary condition on the porous plate surface. These are solved approximately using an expansion-cum-collocation method where the behaviour of the potential functions at the tips of the plates have been used. This method ultimately produces a very good numerical approximation for the reflection and the transmission coefficients and hydrodynamic force components. The numerical results are depicted graphically against the wave number for a variety of layouts of the arc. Some results are compared with known results for similar configurations of dual rigid plate systems available in the literature with good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号