首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>1维护要诀(1)每隔半年时间应对电动自行车进行一次维护,对传动部件润滑防锈,加固各紧固件,调整辐条松紧度。(2)电池充电时,先将充电器输出插头插入电池箱,再将充电器的输入插头接入室电插座。充电采用恒流、恒压、浮充3阶段自动转换方式,当电池达到充  相似文献   

2.
介绍了锂离子电池组的几种常用充电方法,分别是普通的串联充电、电池管理系统和充电机协调配合串联充电、并联充电。以上3种充电方法都有一些缺点。重点介绍了采用电池管理系统和充电机协调配合串联大电源充电加恒压限流的并联小电流充电的充电方法,这种方法可以有效解决锂离子电池组串联充电易出现的过充电、充不满电等问题,且可避免并联充电的充电电源成本高、可靠性低、充电效率低、连接线径粗等问题,是目前最适合高电压电池组,特别是电动汽车电池组的充电方法。  相似文献   

3.
<正>电动车没有电就等于世界没有爱。维护好电动车充电器非常重要,那么该如何保养电动车的充电器呢?1.充电器是由晶体管、集成电路等构成,因此,正确使用好充电器,不仅影响到充电器自身的可靠性和使用寿命,而且还会影响电池的使用寿命。2.使用充电器对蓄电池充电时,要先插上充电器的输出插头,后插输入插头。充电时,充电器的电源指示灯显示红色,充电指示灯也显示为红色。充满后,充电指示灯为绿色。停止充电时,先拔下充电器  相似文献   

4.
电动车用电池容量检测仪是分析电池与充电器匹配性能的检测系统。所谓匹配性,就是指用不同的充电器,对同一种电池进行若干次充放电实验,根据试验中电池性能状态和充电器充电曲线来判断哪种充电器更适合给相应的电池充电。在匹配性检测中,不仅要考虑到电池的性能(包括电池容量、寿命、充放电  相似文献   

5.
采用单片机和充电集成电路进行充电机的设计,不但能够实现对一般的蓄电池进行充电,而且还能够实现相应的过压、温度等保护功能,从而可以充分发挥蓄电池的性能,延长电池的使用寿命,并避免简易充电器在充电时可能对电池造成损害的情况发生。  相似文献   

6.
铅酸电池组的充电器一般以纯硬件组成,三段式充电为主。文章介绍了一种由电流模式控制器UC3842芯片为核心的由单片机进行充电方式控制的可关断充电器。可方便地实现对电池多段式充电方式,文中给出了部分功能电路、充电器PCB板部件、及控制程序流程。  相似文献   

7.
采用电池的一阶RC等效电路模型对低温充电过程进行分析,提出一种适用于低温条件的锂离子电池多阶段恒流充电方法。以三元聚合物锂离子电池和磷酸铁锂电池作为对象,分别在0℃和-10℃条件下进行常规恒流-恒压与多阶段恒流充电方法的测试与对比分析。试验结果显示,与常规恒流-恒压充电方法相比,采用多阶段恒流充电方法,0℃和-10℃条件下,两种电池的充电时间明显缩短,充入电量显著提高。  相似文献   

8.
从放电容量、放电中值电压、充电时间、恒流容量百分比4个方面主要研究了充电限制电压从3.25V至3.85V范围变化对磷酸铁锂电池性能的影响.实验结果表明:对于磷酸铁锂材料的锂离子电池,采用恒流恒压的充电方案,充电限制电压设定在3.55~3.70V较合理,推荐值为3.60~3.65V.  相似文献   

9.
主要从放电容量、放电中值电压、充电时间、恒流容量百分比四个方面研究了充电限制电压从3.25至3.85范围变化对磷酸铁锂电池性能的影响。实验结果表明:对于磷酸铁锂材料的锂离子电池,采用恒流恒压的充电方案,对于磷酸铁锂电池,结合安全性考虑,充电限制电压设定在3.55~3.70V较合理,推荐值为3.60V~3.65V。  相似文献   

10.
<正>1充电器的使用与保养充电之前先确认充电器插头(正负极)与整车电池的插座是否配套,禁止使用非标的和质量低劣的充电器对电池进行充电,以免对电池造成不必要的损坏。充电时先关闭电动车上的电源锁,将充电器输出插头插入充电插座,再将  相似文献   

11.
《摩托车技术》2007,(1):57-57
南京金城电动科技发展有限公司近日推出铅酸电池单体充电电动自行车。该产品采用数字扫描定位充放电技术,改变了传统电动自行车电源系统、充电系统与放电系统的工作模式,使该车串联电池组的每个单体电压在系统的数字扫描定位的监控下始终处于强制平衡状态,整车电动机、电池、控制器和充电器处于最佳匹配状态。它的优点在于充电器可对整组电池进行单体检测、充电、保养及修复,电池从此不需配组,配合金城专用的纳米离子电池可延长使用寿命至2年。  相似文献   

12.
蓄电池充电器是广大摩友特别是摩托车维修人员常用的设备,市面上性能、质量好一点的充电器价值不菲。这里向广大摩友介绍一种简易的蓄电池充电器,电路如图所示。该充电器制作简单、使用可靠、成本低廉、适用广泛(6V、12V均适用),而且具有恒流特性,充电电流不会随电池端电压变化而改变,并对受损的蓄电池具有强力的修复功能。  相似文献   

13.
本文以纯电动汽车为研究对象,开展了集体样车与同一样车的充电性能分析试验,通过试验数据结果,对整车充电控制策略、影响充电性能的关键技术指标等相关内容进行分析。试验结果表明:在低温环境下所有样车都可以正常启动交流充电,而在低温与常温车辆充电电量衰减比、充电时间衰减比略有差异;在同一样车的充电性能分析试验中,分析了低温与常温条件下充电电流趋势、电池输入电流、电池温度、最大充电电流的不同。  相似文献   

14.
本详细分析研究了影响电动车或电动自行车用蓄电池的寿命问题,要完整地解决这个问题应当是一个系统工程,即牵涉到蓄电池有关的方方面面,但本仅从充电器的角度探讨如何解决该问题的方法,即自适应充电控制技术,中特别提及了集成电路芯片TRY20CP/RC04,以及基于TRY20CP/RC04的充电运用,包括串联充电运用与均衡充电运用,从充电器的角度来说该技术的成功运用将最大程度地延长电池的使用寿命。  相似文献   

15.
本文详细分析研究了影响电动或电动自行车蓄电池的寿命问题,虽然要完整地解决这个问题应当是一个系统工程,即牵涉与蓄电池有关的方方面面,但是本文进一步人充电器的角度探讨了如何解决该问题的方法,即自适应充电控制技术,文中特别提及了集成电路芯片TRY20CP/RC04以及基于TRY20CP/RC04的充电运用,包括串联充电运用与均衡充电运用,该技术的成功运用将从充电器的角度最大程度地延长电池的使用寿命。  相似文献   

16.
传统的快充方法可提升锂离子电池充电速度,但容易损害电池寿命,甚至造成安全问题。基于面向控制的锂离子电池电化学机理模型,提出了全新的快速充电算法。针对一款42Ah镍钴锰(NMC)三元锂离子电池,采用该算法进行了快速充电测试,讨论了开发策略中关键参数阈值电势、初始充电倍率的取值对算法效果的影响。结果表明:该方法实现了该款锂离子电池的安全快速充电,在保持电池不析锂情况下将电池充电速度提高了20.5%;算法中的阈值电势主要影响充电时间,而初始充电倍率影响负极过电势最低值。  相似文献   

17.
陈建  肖杰 《汽车运用》2012,(9):39-39
控制好充电环节充电环节的控制对延长蓄电池使用寿命十分重要,过度充电、充电电流过大、充电时间过短等都会降低蓄电池的使用寿命。在充电环节中必须注意以下几点:①对新电池的充电采用小电流,长时间。首先,在充电之前将电池的剩余电量放干,对于12伏标称的电池,放完电后电压应在10.5伏左右;其次,使用智能型充电机充电时,可选用自动控制功能。设置好各项充电参数进行自动充电,通常充电率设置为0.05库伦;再次,  相似文献   

18.
此文所介绍的有关电动自行车用充电器的智能控制模式,可完全避免高温热失控、低温欠充电问题;恰当的充电脉冲具有抑制、消除极化和硫化的功能。延长电池寿命,其实说成减少对电池伤害更为确切。  相似文献   

19.
快速高效的充电方式对于推动汽车电动化,加快以石油为主导的传统交通能源向绿色低碳能源转型,实现中国"双碳战略"的目标具有重要意义。针对充电时间和充电损失的平衡优化问题,提出了一种基于SOC自适应分阶的两步优化多阶恒流充电策略。为实现充电过程的优化分阶,利用改进的二分K-means算法对基于内阻曲线的采样点集进行聚类,实现了充电区间关于内阻变化和分布特征的自适应划分。基于分阶优化结果,采用改进的非支配排序哈里斯鹰优化算法(INSHHO)求解优化电流对应帕累托前沿。利用Logistic混沌初始化及自适应t分布突变算子对哈里斯鹰模型(HHO)进行改进,进一步提升算法的全局寻优能力。最后通过充电对比试验,将优化多阶恒流充电策略与恒流恒压策略(CC-CV)和均分多阶恒流充电策略在不同充电时间条件下进行充电性能对比。结果表明:在充电时间保持一致的条件下,提出的优化多阶恒流充电策略较恒流恒压策略和均分多阶恒流充电策略的充电欧姆损失最大分别减少1.03%和0.3%;在温升表现上,优化多阶恒流充电策略较均分多阶恒流充电策略的充电温升最多降低了0.82℃。  相似文献   

20.
故障现象:一汽奥迪A6L e—tron通过随车充电器无法充电,经销商通过微信与用户确认车辆无故障提示,充电过程无法启用,而使用公共充电桩方式可以充电。初步判断随车便携式充电器损坏。故障诊断:使用VAS615OE检测6C-J1050控制单元无相关故障码。进入引导功能故障查询读取高压蓄电池充电器J1050数据流,发现高压充电枪拔下或是插入充电接口内高压充电插头的状态始终显示“未锁止”,充电插头“立即充电按钮E766”指示灯红色灯常亮,插头已识别但未锁止;无法充电。如图1和图2所示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号