首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 557 毫秒
1.
为了准确提取广域场景道路交通信息,本文融合形态检测与深度卷积网络,提出了无人机视频车辆定位及车型识别方法. 首先,基于形态检测建立候选目标提取算法,并构建了含244 520 个无人机视频车辆样本的深度学习图像基准库;然后,通过增加卷积层、池化层及调整网络参数等方法对AlexNet 进行重构,提出了改进模型AlexNet*;最后,建立了基于候选目标提取算法与AlexNet*的车辆识别方法. 验证分析显示:AlexNet*的图像分类F1 均值达 85.51% ,优于AlexNet(82.54% )、LeNet(63.88% )、CaffeNet(46.64% )、VGG16(16.67% ) 及 GoogLeNet(14.38%);本文车辆识别方法对小汽车及公交车的正检率、重检率和漏检率均值分别达94.63%、6.87%、4.40%,可有效识别无人机视频目标.  相似文献   

2.
为从广域的视角准确全面地采集连续交通流信息,针对悬停无人机视频提出了基于形态分析的车辆自动识别方法。首先,人工勾画视频帧图像的感兴趣区域,并进行灰度化处理;其次,基于感兴趣区域的Canny边缘检测结果生成亚像素级骨架图像,并对图像骨架进行分解和重构处理;然后,综合应用形态学运算(膨胀、腐蚀、填充、闭运算)和连通域形态特征(面积、矩形度、等效椭圆长轴与短轴)识别车辆目标;最后,对548帧无人机视频图像分别进行算法检测和人工识别,并计算车辆识别的正检率、重检率、漏检率和错检率。结果表明:该算法具有较高的正检率(均值95.02%),较低的重检率(均值2.20%)、漏检率(均值2.77%)和错检率(均值8.24%);同时,正检率、重检率、漏检率和错检率标准差分别为2.09%、1.67%、1.67%和2.56%,表明算法性能指标值离散程度较小、稳定性较高。  相似文献   

3.
为了从视频直接有效地提取交通信息,提出了基于三维卷积神经网络 (3D convolutional neural networks,3D CNN)的交通状态识别方法.首先,以C3D (convolutional 3D)深度卷积网络为3D CNN原型,对卷积层数量与位置、平面卷积尺寸及三维卷积深度进行优化调整,形成了37个备选模型;其次,建立了视频数据集,对备选模型进行系统的训练测试,提出了交通状态识别模型C3D*;然后,对C3D* 和现有三维卷积网络模型进行视频交通状态识别测试分析;最后,对比测试了C3D* 及常用二维卷积网络的交通状态识别效果. 对比结果显示:针对视频交通状态识别,C3D* 的F均值为91.32%,比C3D、R3D (region convolutional 3D network)、R (2+1) D (resnets adopting 2D spatial convolution and a 1D temporal convolution)分别高12.24%、26.72%、28.02%;与LeNet、AlexNet、GoogleNet、VGG16的图像识别结果相比,C3D* 的F均值分别高32.61%、69.91%、50.11%、69.17%.   相似文献   

4.
为了准确有效地检测路面裂缝,为路面性能评估、路面养护管理、路面结构和材料设计提供数据支撑,针对1 mm/像素路面三维图像提出了基于像素-亚像素级形态分析的裂缝自动识别算法。首先,应用Canny算法和区域生长算法检测候选裂缝目标并进行融合处理,得到融合分割图像;然后,提取并重构像素级与亚像素级图像骨架;最后,融合像素-亚像素级骨架图像,综合利用形态学算子和轮廓长度、圆度、扁平率等连通域形态特征提取裂缝目标。基于150张路面三维图像(992像素×992像素)对笔者算法和另外5种既有算法进行测试,结果显示,笔者算法获得了较高的准确率(均值90.45%)和召回率(均值96.49%),F均值由高至低分别为:笔者算法(90.72%)、种子并行生长算法(39.65%)、GAVILáN算法(33.46%)、各向异性测度算法(30.32%)、Canny检测(25.85%)和OTSU分割法(5.85%)。算法适用性分析表明,笔者算法较适用于细小裂缝图像识别,种子并行生长算法、GAVILáN算法和各向异性测度算法有利于宽而明显的裂缝识别,而Canny和OTSU通常可作为裂缝识别算法中的一个图像处理环节。  相似文献   

5.
基于视频的交通参数提取在智能交通系统中具有重要意义.针对无人机视频, 提出了一种基于大范围无人机视频的机动车交通参数提取方法.首先通过建立无人机广 域镜头图像的校正算法去除交叉口视频图像的广角畸变,然后将像素坐标转化为真实坐 标.其次,利用帧间差分法计算行驶车辆的速度、加速度、车头间距等车辆运行参数,将计 算结果与真实车辆及软件提取运行参数进行对比,结果证明该方法具有较高的准确性和 可行性.最后,实例验证该方法能较准确地获得交叉口车辆运行参数,并将其应用于车辆 通过交叉口全过程的速度变化规律分析.  相似文献   

6.
准确掌握地铁车辆内拥挤程度是提高城市轨道交通服务质量的手段之一。本文在对地铁车辆监控视频图像提取与分析的基础上,提出了一种基于卷积神经网络的车辆拥挤度识别方法。该方法使用车辆监控视频建立了车厢乘客数据集,通过提取视频图像检测区域以及人群特征检测来实现地铁列车车辆拥挤度识别。实验结果表明,所提出的方法检测速度快,能够满足实际应用中实时性要求,三级拥挤度分类识别实验准确度为98%,四级拥挤度分类识别实验准确度为87%,其检测结果可辅助城市轨道交通管理者快速掌握线网实时客流拥挤情况。  相似文献   

7.
隧道表面裂缝的检测已经成为地铁运营人员的重要巡检任务之一.为实现隧道裂缝病害的自动监测,提出一种结合病害特征提取和深度学习的隧道裂缝样本自动标注与识别算法;针对隧道裂缝形态特征建立裂缝图像的特征样本库,改进了AlexNet深度卷积网络结构;设计研制了轨道移动式隧道图像采集系统以及巡检车,采集并构建了包含4 500张裂缝图像样本和1 500张测试图像的数据集,用以验证算法的可行性和有效性.研究结果表明:采集的图像清晰度符合要求,所设计算法可完成裂缝目标自动标注;裂缝图像测试集的识别率达到97.8%,证明了算法研究和采集系统的有效性.  相似文献   

8.
针对城市道路车流量检测中车辆误分类问题,提出一种基于类锚虚拟线圈的多流向车流量检测算法。首先,采集车辆图像样本并随机裁剪以构建小客车、公交车和摩托车的均衡数据集,通过 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法聚类获得 3 类车型的高度、宽度尺寸,以此校正场景车辆识别线圈尺寸,布设物体检测线圈与组合车辆识别线圈;其次,基于均衡数据集训练ResNet18卷积神经网络完成车辆类型判断;最后,采用改进的核相关滤波器追踪算法追踪车辆轨迹,通过计数线完成多流向车流量检测。验证分析表明:对单向车流,高峰、平峰正检率均值提升了5.09%、4.57%,误检率均值降低了5.31%、2.35%;多向车流中,直行车流的高峰、平峰正计率提升了 5.01%、5.99%,左转车流的高峰、平峰正计率提升了 4.29%、 4.56%。  相似文献   

9.
为提高对低照度图像的语义分割精度,提出了一种基于RPN的边缘增强语义分割模型(EESN)。在该模型中,首先利用深度残差网络提取图像的高阶语义特征,并通过RPN快速生成待分割目标候选区域;然后,利用设计的融合算法对候选区域进行融合,并剔除重复的候选区域;最后,对融合的目标候选区域做低照度边缘搜索,并利用失真代价较小的局部增强算法对低照度边缘进行特征增强。将EESN用于Pascal VOC12和Cityscapes两个数据集的语义分割中,分别获得了81.2%和67.6%的mIoU,该结果证明了EESN对具有低照度边缘的图像具有较好的分割性能。  相似文献   

10.
提出了一种基于单双目视觉融合的车辆检测与基于Kalman滤波的车辆跟踪算法,设计了一种基于二维深度置信网络的车辆检测器。在道路图像中利用单目视觉生成车辆可能存在的区域,构成双目视觉处理的车辆候选集合。在车辆可能存在的区域内利用双目视觉进行误检去除,并获得车辆的位置信息。在二维图像坐标系和三维世界坐标系内,利用Kalman滤波器对检测到的车辆进行跟踪。试验结果表明:算法的检测率为99.0%,误检率为1.3×10-4%,检测时间为57ms,检测率高,误检率低,检测时间短;与单双目视觉弱融合算法、单目视觉算法和双目视觉算法相比,本文车辆检测与跟踪算法兼具双目视觉算法检测率高和单目视觉算法检测时间短的优点。  相似文献   

11.
为判断公路货车车型,并提升货车车型识别的速度与精度,提出基于深度学习的方法对公路货车及其轮轴进行精细化目标检测;采用道路监控拍摄和网络爬取的方式获得了16 403张公路货车侧方图像,建立了货车侧方图像数据集,并采用Retinex理论和加入限制对比度的自适应直方图均衡化(CLAHE)等视觉增强方法预处理所采集图像中的光照不均图像和夜视图像;通过理论分析和对比试验选取单阶段检测网络YOLOv3作为公路货车车型识别的目标检测网络,并从调整先验框和模型输入大小以及引入注意力机制3个方面优化了检测模型;针对单帧图像可能同时出现多辆货车的情况,采用基于目标位置信息挖掘的算法分析了货车与轮轴的位置信息,提出一种通过轮轴中心点与货车预测框位置信息判定公路货车与轮轴隶属关系的方法。研究结果表明:图像经过预处理可显著增强车辆的特征信息,优化后检测模型的网络性能得到提高,通过对目标位置信息的挖掘与利用可以很好地解决货车车型判定问题;优化后的检测模型实时检测速度可达47帧·s-1,对公路货车车型的识别综合准确率达到了94.4%。该方法实现了对公路货车车型的无接触、快速和准确识别,为公路货...  相似文献   

12.
针对信号调制识别对复杂通信环境缺乏适应性与精度不足的问题,提出一种基于深度学习的多特征复合神经网络框架. 该框架首先使用前端卷积神经网络检测信号载波特征,再对前端初筛选信号执行预处理将其转换为信号时频图,最后设计了后端轻量化卷积神经网络,检测信号时频特征. 基于TensorFlow平台的复合神经网络对机场真实信号检测精度达到99.23%,实验表明该方法可有效应用于实时机场信号检测.   相似文献   

13.
基于交通视频监控图像的天气识别已经成为智能交通系统中重要的研究课题. 虽然卷积神经网络(convolutional neural network,CNN)在图像识别技术获得了巨大的发展,但是针对复杂交通场景的天气识别问题,现有的模型在特征表达方面仍然面临着巨大的挑战. 为了提取丰富的语义特征,提出了基于联合投票机制的深度神经网络(deep neural network,DNN)模型. 所提出的模型包括两个核心模块:基于通道和空间注意力机制的二阶特征模块和基于复合特征结果联合投票机制的分类模块, 用以提取不同天气图像中的判别性信息,提高在复杂交通场景下的天气识别性能. 最后,在两个基准天气分类数据集上进行了验证试验,结果表明:对于复杂场景条件下的天气识别问题,所提出的基于联合投票机制的深度神经网络模型的识别正确率优于目前最好的天气识别方法的1.97%.   相似文献   

14.
针对无人机空中姿态不稳定造成影像相对定向精度较低的问题,提出了基于POS(positionand orientationsystem)数据生成无人机影像航带及组成立体像对的方法.并根据相对定向原理,将无人机的POS数 据作为相对定向的先验约束条件与误差方程一起进行平差,以重新构建代价函数,进行影像的相对定向.为验证 该方法的有效性,将其与常规的相对定向方法进行了对比实验.实验结果表明:将POS数据作为先验约束条件, 能够使相对定向精度提高10%以上,特别是在无人机影像畸变较大的情况下能获得较好的改善效果.   相似文献   

15.
为提高智能车在真实环境中的实时检测能力,改善复杂环境下检测效果不佳的问题,本文提出一种基于轻量化网络和注意力机制的智能车快速目标识别方法。首先,为了减少网络计算参数和提升目标识别算法的推理速度,提出利用GhostNet加速YOLOv4的特征提取;其次,为了提高复杂场景下对道路目标的识别精度,在GhostNet和特征金字塔部分添加结合软阈值化改进的注意力模块;最后,为了验证本文提出方法的有效性,选取Pascal VOC、KITTI公开数据集和自制城市道路数据集进行实验对比。与其他目标检测算法在精度和速度上进行比较,结果证明,本文方法在平均检测精度提升1.7%的情况下,模型参数量降低到原来的18.7%,检测速度提升了 66%,检测速度和精度均优于其他算法,可满足智能车的实时感知需求。  相似文献   

16.
应用小波模历史图像的运动车辆视频检测   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高车辆目标检测的稳定性和准确性,提出了基于背景减除和小波分解模历史图像的运动车辆检测算法.首先对原始图像进行小波分解,对低频分量用混合高斯模型和纹理特征相结合的方法,自适应更新背景并标记运动目标初始区域;然后,基于高频分量计算模值,并通过逐帧历史累积得到模历史图像;最后,利用车辆目标与阴影相比富含边缘细节的特点,对目标进行倾斜校正后,将目标边缘分别沿图像x和y方向投影,利用投影曲线将边缘信息与目标初始区域信息迭代融合,得到最终检测结果.实验结果表明,用本文方法检测车辆的捕获率达到99.0%,有效率为92.5%;与使用单一自适应背景提取方法相比,在实际交通场景中可有效处理阴影导致的多目标粘连问题,检测结果更准确.  相似文献   

17.
轨道交通线路净空安全是确保列车平稳、不间断运行的基础.由于轨间异物对行车安全产生严重影响,所以基于非轨道电路的轨道异物入侵检测系统在铁路系统中具有十分广泛的应用前景.本文提出了一种基于移动车载摄像机检测轨间异物的方法.首先,通过钢轨识别算法自动定位钢轨位置,并确定列车前方轨道是否有其它列车或公路车辆等大型异物,若有则进行报警;之后,基于边缘检测的异物检测算法自动检测轨间可疑小异物,同时提取可疑异物的尺度信息和颜色索引参数等相关特征;最后,用支持向量机(SVM)来对可疑小异物区域进行分类和辨识.车载实验结果表明,该方法可以有效地检测出轨间异物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号