首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
为提高高级辅助系统对车辆前方环境识别的准确性,提出一种基于雷达和视觉传感器信息融合的目标识别方法。雷达与视觉融合算法是基于决策级的雷达与视觉检测目标,在世界坐标系中进行目标时间空间对准、数据关联匹配、滤波,最后根据应用功能输出融合目标信息。结果表明该算法具有较强的环境适应性和准确率,弥补了单一传感器在目标识别中的不足。  相似文献   

2.
为了研究加速度传感器粘贴方式对车辆碰撞试验数据采集的影响,引入双面胶安装加速度传感器的粘贴方式,并运用ORM(Objective rating method)方法评价碰撞试验中加速度-时间历程曲线的一致性,通过台车模拟与整车碰撞试验验证使用双面胶安装传感器的可靠性与稳定性。试验结果表明:相较于传统的胶粘方式,采用双面胶安装加速度传感器获得的试验数据可靠性更高;在整车试验中根据工况、车身结构、传感器位置及不同安装方式特点,综合使用螺栓、双面胶与胶粘方式进行传感器布置安装。  相似文献   

3.
根据国六柴油机台架上的性能试验经验,某些后处理系统SCR下游NO x传感器测量的NO x值与台架气体分析仪的测量值之间存在较大偏差.利用计算流体力学(C FD)技术对两种后处理方案进行计算,分析了尿素喷雾的形态及蒸发分解,对SCR载体前端面和NO x传感器安装位置的氨分布均匀性进行了评估,针对NO x传感器探头位置的氨分布偏差值占比进行了分析.仿真结果表明,SCR前氨气不均匀是NO x传感器测量偏差大的原因,SCR下游增加螺旋混合装置后,测量偏差可从15% 降低到0.5%,解决了偏差大的问题.台架试验显示仿真与试验结果吻合良好,证明了C FD分析结果的可信性.  相似文献   

4.
一种基于雷达和机器视觉信息融合的车辆识别方法   总被引:1,自引:0,他引:1  
为提高先进驾驶员辅助系统对车辆前方环境识别的准确性,提出一种基于雷达和视觉传感器信息融合的车辆识别方法。系统工作前预先对毫米波雷达和摄像头进行联合标定,并确定雷达坐标系和摄像头坐标系的变换关系。车辆识别过程中,首先根据雷达信息确定图像坐标系中的车辆识别感兴趣区域;然后对感兴趣区域进行对称性分析获得车辆对称中心,并对车辆底部阴影特征进行分析处理完成车辆边缘检测;最后根据逆透视变换得到车辆识别宽度,根据识别宽度对识别结果进行验证。结果表明该算法具有较强的环境适应性和准确率,弥补了单一传感器在车辆识别中的不足。  相似文献   

5.
张红升  宋伟浩 《隧道建设》2022,42(5):841-846
为解决当前手段不能实现管环端面平整偏差自动测量的问题,及时为人工补偿平整偏差提供数据依据,基于所建立的模型设计自动测量方案并对测试应用结果进行分析总结。通过分析盾构施工特点,确定可在盾构坐标系内表征测量点坐标,在此基础上推导基于推进油缸行程的管环平整偏差数学模型,证明基点与测量点间距与安装角度关系可由三角函数描述,且可在平面直角坐标系内计算平整偏差。设计基于油缸行程传感器的评估算法、测量方案,实际测试的数据表明,和人工测量结果相比,该系统能以较高精度自动监测管环平整偏差,有效降低测量人员的劳动强度。  相似文献   

6.
偏差分析方法分为一维尺寸链和三维尺寸链分析,其中通过三维软件仿真分析能够实现空间多维度的尺寸链模拟计算,如三维角度偏差仿真分析。文章针对ADAS前毫米波雷达安装基准面角度偏差要求,基于3DCS分析软件,采用蒙特卡洛模拟法,对雷达安装面偏差建模分析,通过仿真分析结果确定设计结构及相关链环的公差定义是否合理,并进行优化设计。  相似文献   

7.
为了分析氮氧传感器安装于消声器载体的不同位置对氮氧测量值的影响,分别将氮氧传感器安装于消声器上选择的不同位置上,当发动机运行在相同的工况下时,通过CANalyzer记录氮氧传感器测量数据,并对这些数据进行对比分析,从而选择最佳的传感器安装位置。  相似文献   

8.
介绍了智能驾驶汽车各环境感知传感器的特点,举例说明了在特殊场景下的安全隐患,并重点讲解了毫米波雷达在整车上的布置要求,为环境感知传感器在其他车型上的布置提供参考。  相似文献   

9.
轮式装载机在工作区域行驶时,避障过程频繁,以往的避障轨迹规划未考虑整车转向半径约束和车速变化,也较少考虑整车在动力学模型条件下的轨迹跟踪性能。针对上述情况,以自动驾驶轮式装载机为对象,基于最优快速随机扩展树算法(RRT*),考虑车身膨胀圆个数,生成全局最优避障路径,以整车最小稳定转向半径为约束,利用CC-Steer算法对避障路径进行平滑处理,采用路径-速度分解算法规划满足整车在加速、匀速和减速状态下的避障行驶轨迹。基于整车动力学模型,考虑行驶过程中的横向位置偏差和航向角偏差,并将整车动力传动系统视为1阶惯性环节,构建装载机动力学状态空间方程。以加速度和铰接角为控制输入,以车速、横向位置偏差和航向角偏差为控制输出,建立整车动力学预测模型,以加速度、铰接角和车速为约束条件,将目标函数转换为二次规划问题,建立满足装载机在工作区域避障的模型预测轨迹跟踪控制系统。以规划的非匀速行驶避障轨迹为目标,利用构建的模型预测轨迹跟踪系统,进行自动驾驶轮式装载机的轨迹跟踪仿真。研究结果表明:所提方法能够很好地控制自动驾驶轮式装载机从初始位姿驶向目标位姿,实现整车在工作区域的避障过程,且在避障过程中满足整车的约束要求,保证整车在轨迹跟踪过程中的安全稳定性能。  相似文献   

10.
为解决利用雷达回波实现静止目标和运动目标的准确识别这一驾驶辅助系统的关键技术问题,本文中基于地面目标运动状态转移机理提出了一种基于时间窗的汽车前方静动目标状态分类方法。在地面静动目标运动状态与转移机理分析的基础上,将目标分为静止目标、同向运动目标、反向运动目标、起停目标和未分类目标等5类,建立了在固定时间窗内的目标运动状态的转移状态机模型,并确定了目标状态转移的条件阈值和时间窗长度,最终在驾驶辅助试验车上进行了前方同向或反向行驶车辆、树木等静止物体和制动停车车辆等各种典型工况下的识别试验,为实现基于毫米波雷达的自适应巡航与自动紧急制动的驾驶辅助系统的工程化提供了技术支撑。  相似文献   

11.
As driver assistant systems (DAS) and active safety vehicles (ASV) with various functions become popular, it is not uncommon for multiple systems to be installed on a vehicle. If each function uses its own sensors and processing unit, it will make installation difficult and raise the cost of the vehicle. As a countermeasure, research integrating multiple functions into a single system has been pursued and is expected to make installation easier, decrease power consumption, and reduce vehicle pricing. This paper proposes a novel side/rear safety system using only one scanning laser radar, which is installed in the rear corner of the driver’s side. Our proposed system, ISRSS (integrated side/rear safety system), integrates and implements four system functions: BSD (blind spot detection), RCWS (rear collision warning system), semi-automatic perpendicular parking, and semi-automatic parallel parking. BSD and RCWS, which operate while the vehicle is running, share a common signal processing result. The target position designation for perpendicular parking and parallel parking situations is based on the same signal processing. Furthermore, as system functions during running and those during automatic parking operate in exclusive situations, they can share common sensors and processing units efficiently. BSD and RCWS system functions were proved with 13025 and 2319 frames, respectively. The target position designation for perpendicular and parallel parking situations was evaluated with 112 and 52 situations and shows a success rate of 98.2% and 92.3%, respectively.  相似文献   

12.
车辆前方行驶环境识别技术探讨   总被引:1,自引:1,他引:0  
基于雷达和视觉技术对车辆前方行驶环境识别,进而判断车辆安全状态和实现纵向横行运动状态警示和控制,其是实现汽车安全辅助驾驶的主要技术途径。介绍车辆前方行驶环境识别涉及到的雷达和视觉的一些技术,其中包括雷达种类和适用场合,雷达检测障碍物的算法,车用图像的性能要求,基于图像特征和模型的车道线识别的方法,利用图像实现其他环境信息识别的方法。  相似文献   

13.
针对雾天能见度较低的情况,本文通过利用毫米波雷达对前方道路进行探测,识别其他车辆的行驶状态以及位置,采用可视化显示方式将探测结果向驾驶员进行提示,提高驾驶员对于前方道路的把握程度,保障车辆的安全运行。  相似文献   

14.
立交出口匝道安全性判断的探讨   总被引:1,自引:0,他引:1  
应用运行速度计算方法对互通立交分流点处车辆的行驶速度进行分析,并对现行规范中分流点曲率半径R及回旋曲线参数A的取值进行了进一步探讨,为判断立交出口的安全性提供了有效可行的方法。  相似文献   

15.
为了给大型营运客车换道预警系统设计提供参考,采用毫米波雷达、激光雷达、车道线识别传感器、GPS、视频监控系统以及控制器局域网(CAN)总线数据采集仪等设备,基于小型乘用车搭建浮动车采集平台。通过在试验线路上进行1.5×104 km的驾驶试验,获取1 200余次营运客车的真实换道数据。以Jula提出的换道安全性模型为基础,结合营运客车的换道行为特征,通过分析换道进程结束后客车需要与周围车辆保持的安全距离,建立适合于营运客车的3类换道安全性识别模型(客车与自车道前方车辆、目标车道前方车辆、目标车道后方车辆),并利用真实数据对3类模型进行验证。研究结果表明:客车换道持续时间均值为10.4 s,换道起始时刻与目标车道后方车辆的距离为10.0~40.0 m;所有换道样本中,73.3%的换道过程中客车速度要高于目标车道后方车辆,且超过90%的换道过程是由前方慢车引起;不同的速度区间下,车速和航向角联合变化情况下,驾驶人控制营运客车的横向偏移速度保持稳定,可认为客车驾驶人的心理预期换道进程存在固定经验模式,这与小型车换道的研究结论存在较大差异,传统的TTC预警算法识别率较低,在不同速度区间情况下,所提出的模型对客车与自车道前方车辆、目标车道前方车辆、目标车道后方车辆的换道安全识别评价准确率均超过了90%。  相似文献   

16.
为解决城市低速条件下智能汽车在避障过程中的路径规划问题,提出面向动态避障的智能汽车滚动时域路径规划方法。首先,划分车道可行区域,利用3次拉格朗日插值法拟合车道边界,并根据"车-路"的相对位置关系将车道区域进一步划分为车道间区域与车道内区域两部分。其次,以区域虚拟力场进行动态交通场景模拟,包括在障碍车周身沿车道方向的虚拟矩形区域斥力场,行驶目标位置的虚拟引力场和车道保持虚拟区域引力场3个部分,然后结合划分的车道区域确定各虚拟力场的作用区域。再次,建立主车动力学与运动学模型,障碍车运动学预测模型,把主车与障碍车无碰撞,主车行驶在车道内区域,趋向目标位置以及保证车辆稳定性作为优化目标,综合车辆模型的控制输入、状态变量等动力学约束条件,构建多目标的滚动时域控制器用于车辆避障路径规划,求解获得前轮转角作为控制量。最后,利用MATLAB和veDYNA软件对提出的路径规划控制系统分别在静态障碍和动态障碍工况下进行联合仿真。研究结果表明:该方法能够很好地解决躲避静态障碍和低速动态障碍车的问题,控制车辆驶向目标位置,并且在避障过程中满足车辆的动力学约束,同时又不会与道路边界发生碰撞,保证了车辆的安全性和稳定性。  相似文献   

17.
首先介绍了主动安全系统中探测静止车辆时遇到的问题,之后分析了雷达和视觉系统各自的特点,利用他们各自的优点设计了一套探测路面上静止车辆的方法。先通过雷达对静止车辆探测,再通过有效的图像处理方法进行分析和确认.因此能够快速、精确、可靠地识别静止车辆。  相似文献   

18.
以驾驶员预瞄点处的横向偏移最小为目标,以道路曲率输入的车辆运动模型为基础,分析了车辆进行主动转向所需要的道路环境信息,并研究了利用电子地图及车辆定位传感器得到这些信息的方法。利用设计的转向控制器进行了恒定道路曲率及基于电子地图数据的实际道路信息输入下的主动转向仿真。仿真结果表明,利用电子地图提供的信息能够在投入较低成本的条件下进行主动转向,使车辆在道路曲率变化的情况下沿预定道路行驶并有着较小的侧向加速度;从而提高车辆在弯曲道路行驶的安全性、舒适性。  相似文献   

19.
大跨度桥梁一般较柔且桥面较高,车辆与桥梁间耦合作用明显,桥面风速较大时车辆风荷载也将增大,列车-桥梁系统抗风安全性成为重要课题。为了研究阵风环境下高速列车驶过独塔斜拉桥时的耦合振动特性,利用有限元方法建立多自由度有限元独塔斜拉桥子系统(转为线性弹性体),利用多刚体动力学方法建立CRH3四动四拖八辆编组高速列车子系统,在两子系统基础上,搭建起高速列车-独塔斜拉桥刚-柔耦合大系统。利用线性滤波法并考虑空间竖向和横向相关性生成了空间脉动阵风,其作为外部激励输入车-桥系统中,选用Park数值积分方法进行了求解。在此基础上,通过时域/频域方法分析阵风激扰对车-桥系统的影响,并继续研究风攻角、行车速度对车辆安全运行的影响,并得到相应条件下的车速限值。研究结果表明:利用有限元与多体动力学方法结合的刚-柔耦合系统同时阵风作为激励输入,可以有效模拟风-车-桥系统;空间脉动阵风使得车-桥系统各动力学响应明显加剧,并激起车辆及桥梁的低频振动;车速提高使桥面低频及车辆中低频振动被激起,振动向更高频率移动;风攻角在60°~90°时影响最大;在预设条件下,车速为230 km·h-1时,列车轮重减载率已超过安全限值(0.8),此时列车在桥梁上行驶安全已无法得到保证。  相似文献   

20.
Prevention of train from derailment is the most important issue for the railway system. Keeping derailed vehicle close to the track centreline is beneficial to minimise the severe consequences associated with derailments. In this paper, the post-derailment safety measures are studied based on low-speed derailment tests. Post-derailment devices can prevent deviation of the train from the rail by catching the rail, and they are mounted under the axle box. Considering the different structures of vehicles, both trailer and motor vehicles are equipped with the safety device and then separately used in low-speed derailment tests. In derailment tests, two kinds of track, namely the CRTS-I slab ballastless track and the CRTS-II bi-block sleeper ballastless track, are adopted to investigate the effect of the track types on the derailment. In addition, the derailment speed and the weight of the derailed vehicle are also taken into account in derailment tests. The test results indicate that the post-derailment movement of the vehicle includes running and bounce. Reducing the derailment speed and increasing the weight of the head of the train are helpful to reduce the possibility for derailments. For the CRTS-I slab ballastless track, the safety device can prevent trailer vehicles from deviating from the track centreline. The gearbox plays an important role in controlling the lateral displacement of motor vehicle after a derailment while the safety device contributes less to keep derailed motor vehicles on the track centreline. The lateral distance between the safety device and rails should be larger than 181.5?mm for protecting the fasteners system. And for the CRTS-II bi-block sleeper ballastless track, it helps to decrease the post-derailment distance due to the longitudinal impacts with sleepers. It can also restrict the lateral movement of derailed vehicle due to the high shoulders. The results suggest that, CRTS-II bi-block sleeper ballastless track should be widely used in derailment prone areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号