首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对道路曲率变化范围较大时,智能车辆在大曲率道路工况车道保持控制精度低的问题,提出一种基于可拓切换控制理论的智能车辆车道保持控制系统,该车道保持系统由上层可拓控制器和下层控制器两部分组成。在上层可拓控制器中,通过车道线检测得到车辆相对于道路的位置信息和道路曲率信息。根据可拓集合理论,选取预瞄点处横向位置偏差和前方道路曲率值作为可拓集合的特征值并划分可拓集合,求解关联函数,并根据关联函数值将车辆-道路系统状态分为经典域、可拓域和非域。在下层控制器中,在经典域采用基于横向位置偏差和航向偏差的PID反馈控制器,在可拓域中采用基于前方道路曲率的PID前馈-反馈控制器,非域中车辆-道路系统处于完全失控状态,采取紧急制动。2种仿真工况结果表明:相比于单一PID反馈控制,提出的车道保持控制系统,有效抑制了在大曲率道路下的跟踪误差值,提高了智能驾驶汽车在时变曲率的道路工况下车道保持控制精度和工况适应性。  相似文献   

2.
针对道路曲率变化范围较大时,智能车辆在大曲率道路工况车道保持控制精度低的问题,提出一种基于可拓切换控制理论的智能车辆车道保持控制系统,该车道保持系统由上层可拓控制器和下层控制器两部分组成。在上层可拓控制器中,通过车道线检测得到车辆相对于道路的位置信息和道路曲率信息。根据可拓集合理论,选取预瞄点处横向位置偏差和前方道路曲率值作为可拓集合的特征值并划分可拓集合,求解关联函数,并根据关联函数值将车辆-道路系统状态分为经典域、可拓域和非域。在下层控制器中,在经典域采用基于横向位置偏差和航向偏差的PID反馈控制器,在可拓域中采用基于前方道路曲率的PID前馈-反馈控制器,非域中车辆-道路系统处于完全失控状态,采取紧急制动。2种仿真工况结果表明:相比于单一PID反馈控制,提出的车道保持控制系统,有效抑制了在大曲率道路下的跟踪误差值,提高了智能驾驶汽车在时变曲率的道路工况下车道保持控制精度和工况适应性。  相似文献   

3.
基于图像传感器获得的车辆位置信息,提出一种分析汽车驾驶员驾驶特性的新方法。建立基于模糊机制的驾驶员车道内行驶安全评价模型,以数据库的观点对车辆行驶过程数据进行描述,通过分时间段采样的方式记录行驶车辆距道路标识线的横向距离,根据采样数据特征的统计分析结果确定车道内行车的安全评价模糊隶属度,以此评估驾驶员车道内行车的安全性,分析驾驶员的行车特点。车辆行驶试验表明,该方法能够准确分析驾驶员的行车状态,并评判驾驶员车道内行驶的安全特性。  相似文献   

4.
提出一种基于多点预瞄的车道保持辅助系统,通过选取多个预瞄点建立仲裁规则,以最能表征车辆偏离车道中心线的预瞄点作为误差输入,设计前馈控制加反馈控制的横向位置控制方法.并进行实车试验验证.  相似文献   

5.
为了提高客运车辆危险驾驶状态的辨识效能,提出利用机器视觉辨识危险驾驶行为。使用车载CCD实时采集路面图像,依据图像处理算法检测车道标识线的位置以及本车与前方目标车辆的实时距离,建立了车辆横向偏航辨识模型和车辆纵向危险行驶状态辨识模型;结合所建模型的辨识结果,确定预警方案。实车试验结果表明,所建模型能有效辨识车辆横向偏航和纵向跟车过近危险行驶行为,可用来降低潜在的危险驾驶行为,提高车辆在途行驶安全性。  相似文献   

6.
为明确高速公路行驶环境下车辆在车道保持阶段的行驶轨迹特征,给车道宽度值确定提供参考,在重庆市主城区2段高速公路上开展了38名驾驶人的实车驾驶试验。使用车载设备采集自然驾驶状态下的车辆行驶速度、行驶轨迹和“车辆中心点-车道线”横向距离。基于以上数据,计算轨迹横向偏移值和“车身轮廓-车道线”侧向余宽等参数,分析高速公路直线/曲线路段的车辆轨迹横向偏移和侧向余宽变化特征及其影响因素。结果表明:曲线路段和直线路段的期望轨迹横向偏移存在差异,曲线路段行驶轨迹的本质特征是轨迹往曲线内侧偏移,而直线路段的车辆轨迹是倾向于往车道左侧偏移,但曲线路段紧贴车道线行驶的车辆占比要低于直线路段。直线路段车道左侧余宽最小值、期望值分别集中于[0.2 m, 0.6 m]和[0.3 m, 0.9 m],曲线路段车道左侧余宽的最小值和期望值主要分布在[0.2 m, 0.7 m]和[0.5 m, 0.9 m]范围内;车道位置对期望轨迹横向偏移和车道侧向余宽均有影响,左转弯路段的左侧余宽要低于直线路段和右转弯路段;在左转弯路段内侧车道行驶时车辆与中分带的距离更近,因此左转弯的事故风险更高;行驶速度增加时,内侧车道的车辆有...  相似文献   

7.
采用VTR摄像机记录车辆通过观测断面处的侧向位置,应用Virtualdub视频分析软件判读车辆外侧前轮至道路中心线的距离.选取典型双车道公路上8处曲线为试验段,根据试验数据的统计分析结果,得到以下主要研究结论:车辆在进入曲线段时,行驶轨迹存在着朝曲线内侧偏移的运动趋势;在出曲线段时,车辆行驶轨迹趋向朝曲线外侧偏移;平曲...  相似文献   

8.
基于多点序列预瞄的自动驾驶汽车路径跟踪算法研究   总被引:1,自引:0,他引:1  
针对自动驾驶汽车自主行驶问题,提出了一种基于预瞄信息的路径跟踪算法。以GPS轨迹点序列作为目标路径,建立车辆—路径相对运动关系模型,使用实时差分GPS数据确定车辆位置。通过预瞄点序列,计算路径的预瞄偏差角和路径弯曲度。根据路径弯曲度确定行驶速度,实现纵向控制;通过Pure Pursuit算法将预瞄偏差角转换成前轮转角的控制量,实现横向控制。试验结果表明,提出的路径跟踪方法在纵向、横向控制和跟踪平稳性方面都具有良好的效果。  相似文献   

9.
我国的交通示意线共有16种.其式样、颜色和作用分别是: 车道中心线为白色或黄色,其作用是用来分隔对向行驶车辆的交通流. 车道分界线为白色虚线,其作用是分隔同向行驶车辆的交通流.  相似文献   

10.
为了研究驾驶员视觉通道被车载信息系统所占用时,驾驶员对交通信息进行实时加工处理的机理及其应对事故风险的能力,模拟车载信息系统设计了诱导驾驶员视觉分神的驾驶次级任务。根据次级任务的复杂程度划分为3个任务难度等级,使得驾驶员单次视线离开路面的时间随着次级任务难度增加而递增;基于驾驶仿真试验平台,构建了城市道路和高速公路下的典型跟驰场景;招募熟练驾驶员,于驾驶过程中根据试验声音提示执行驾驶次级任务。对采集的试验数据先采用箱图方法进行离群处理,对筛选后的数据采用方差分析和多重比较的方法,分析驾驶员对车辆车道位置掌握、转向盘调整等相关横向操控行为,驾驶员对车辆纵向位置调整、车速调整等相关纵向操纵行为,以及通过其对车辆横纵向控制反映出的补偿措施。分析结果表明:无论车辆处于高速还是低速行驶环境,处于视觉分神状态的驾驶员对车辆的横向控制能力均会变差;驾驶员视线离开路面的时间越长,其对车辆的横向控制能力越差;车辆高速行驶时,驾驶员将面临更大的横向失控风险;而无论车辆处于高速还是低速行驶环境,驾驶员在意识到自身视线离开路面时间过长后,均会通过降低速度和增大跟车距离,以平衡视觉分神带来的纵向方向上的事故风险。  相似文献   

11.
城市道路交叉口交通隔离栏侵入内侧车道建筑限界,导致车辆横向偏移,增加行车风险。为了解城市平面交叉口交通隔离栏对左转车辆规避行为的影响,通过无人机采集3个设有交通隔离栏的平面交叉口车辆视频,提取车辆轨迹、速度、加速度等参数。分析交叉口出口不同车道车辆偏移和速度的分布特性,研究左转车辆规避特性。结果表明:(1)两侧车道上行驶的车辆更倾向于向中间车道偏移,中间车道行驶轨迹则较为稳定;(2)20 m的行程可供驾驶人稳定行驶方向,保持与交通隔离栏的安全横向距离;(3)左侧车道上85%以上车辆远离交通隔离栏行驶,平均偏移距离为0.278 m;右侧车道上60%左右车辆远离右侧行驶,平均偏移距离为0.116 m。(4)左转车辆在出口不同车道的速度分布存在显著差异,其中左侧车道和右侧车道上左转车辆速度分布峰值、横向加速度均值、纵向加速度均值均小于中间车道。以此提出城市道路交叉口的改善方法:(1)增加中分带宽度,提升路侧净距,实现左侧车道名义路权宽度与实际路权宽度一致;(2)增大硬质设施与驾驶人的横向距离;(3)开口段硬质设施优化为柔性,减弱设施心理冲击,降低驾驶负荷;(4)增设路面导流线和反光设施,保证...  相似文献   

12.
文章针对重型汽车在长大下坡路段的行驶安全问题,对辅助减速车道的设计进行研究。根据排气制动和液力缓速器联合制动的行驶模型,对重型车辆在长大下坡路段的下坡能力进行研究。根据下坡时制动器的温升模型,研究长大下坡路段的辅助减速车道位置设计问题。  相似文献   

13.
在设计车道偏离防止系统时,为充分利用差动制动控制和主动转向控制,同时兼顾车辆行驶的安全性与驾驶员驾驶自由,提出了一种双级预警的利用主动转向与差动制动协调控制的车道偏离防止策略。当车辆危险程度较低时仅采用差动制动控制,保证驾驶员对转向盘的控制;当车辆危险程度较高时,采用预测控制实现主动转向与差动制动系统的协调控制,使车辆能快速地回到车道中心线。选取跨道时间来设计车辆偏离预警算法,并根据车辆转向系统的响应分别设定预警阈值。为保证车辆的稳定性,采用模型预测控制算法添加合理的约束,设计差动制动控制和主动转向与差动制动协调控制器。仿真与硬件在环试验结果表明,所设计的基于主动转向与差动制动协调的车道偏离防止控制策略在保证车辆行驶安全性的前提下给予了驾驶员充分的驾驶自由。  相似文献   

14.
车辆前方行驶环境识别技术探讨   总被引:1,自引:1,他引:0  
基于雷达和视觉技术对车辆前方行驶环境识别,进而判断车辆安全状态和实现纵向横行运动状态警示和控制,其是实现汽车安全辅助驾驶的主要技术途径。介绍车辆前方行驶环境识别涉及到的雷达和视觉的一些技术,其中包括雷达种类和适用场合,雷达检测障碍物的算法,车用图像的性能要求,基于图像特征和模型的车道线识别的方法,利用图像实现其他环境信息识别的方法。  相似文献   

15.
汽车先进驾驶辅助系统在应用时要根据不同的车辆行驶工况对车辆进行相应的控制,而准确的车辆行驶工况识别信号是合理的控制策略的基础.为了得到准确的车辆行驶工况识别信号,利用视觉传感器分别对车辆跟踪定位,以及车道线检测技术进行了研究.利用adaboost分类器检测出前方车辆;应用文中提出的基于坐标映射与定比分线并能够抵抗俯仰角干扰的测距方法进行车辆定位,验证结果显示该测距方法误差小于1m;再应用改进后的基于置信度判断与Kalman滤波技术的车道线跟踪检测方法进行车道线检测,并通过实车道路试验对此进行了验证,验证结果显示该车道线检测方法误差小于1°.提出1种基于PreScan的将所应用的车辆跟踪测距与车道线跟踪检测方法相结合的方法,用以实现汽车ADAS纵向行驶工况的识别,并通过PreScan仿真场景验证了该工况识别方法,结果表明该方法能够为ADAS提供准确的工况识别信号.   相似文献   

16.
受路侧环境与障碍物的影响,在不同车道上的行车位置分布差异会导致驾驶人视点位置不同。驾驶人视点位置与平曲线横净距密切相关,平曲线横净距是停车视距的重要参数,其大小直接影响平曲线路段圆曲线半径的设置和交通安全措施的选择。在分析多车道高速公路管理方式因素对驾驶人视点横向位置影响和国内外驾驶人视点位置相关研究的基础上,采用无人机调查多车道高速公路不同车道、不同车型的车辆横向位置分布数据,通过数据采集处理和数据检验,得出了相应结论。结果表明:多车道高速公路不同车道、不同车型的车身横向位置为正态分布;现有视点位置统一取1.2 m或1.5 m或行车道中心线存在不合理之处,应分车型、分车道考虑;第1车道小客车驾驶人视点位置为1.2 m,第4车道大型车驾驶人的视点位置取1.5 m,中间车道驾驶人的视点位置宜取1.2 m。  相似文献   

17.
文章分析了车辆折算系数常用计算方法的适用条件。考虑双车道公路的特点,基于车头时距的计算方法,建立了适用于双车道公路的车辆折算系数模型。该模型综合考虑了车辆纵向的运行特性——车头时距的关系以及车辆横向的运行特性——车辆行驶过程中所占用道路宽度。利用该模型,通过对实测数据的计算,得到了双车道公路的车辆折算系数值。  相似文献   

18.
针对智能车辆横向运动控制中驾驶员和辅助系统的控制权限冲突问题,本文中提出一种人机权值分配策略。采用车辆在预瞄点处的预期偏移距离(PDLC)衡量车道偏离危险度,预期偏移距离通过对预瞄偏差修正获取。权值分配函数设计时以PDLC为自变量,以保证驾驶员的权值为优先控制目标,以一定的横向运动控制精度为先决条件。在CarSim/Simulink联合仿真平台和CarSim/Labview RT硬件在环实验台上对提出的控制策略进行了实验验证和数据分析。结果表明,采用权值分配策略协调驾驶员和辅助系统的控制,可在有效跟踪理想道路中心线的前提下保证驾驶员的控制权值,降低其工作负荷以及纠正驾驶员的误操作行为。  相似文献   

19.
在传统的自适应巡航(Adaptive Cruise Control ACC)控制中,主要依靠雷达或视觉对车辆周围环境的感知,但是在一些情况,比如:下雨、雾天或者在弯道行驶时,因为传感器对外界感知能力的不足,造成自适应巡航体验不佳;为克服雷达和视觉传感器的不足,文章主要基于C-V2X(Cellular Vehicle to Everything)技术,结合RSU(Road Side Unit)发送局部地图,实现车辆对周边车辆的感知。在弯曲道路下,ACC利用车车通信V2V(Vehicle to Vehicle)和RSU发送的MAP消息集,实现对不同车道的目标车辆进行实时切换,保障车辆在弯道上的ACC行驶安全。通过Matlab/Simulink搭建基于C-V2X的ACC算法,通过仿真表明利用C-V2X的ACC在弯道上能够根据RSU提供的MAP消息集,针对不同车道远车RV(Remote Vehicle)进行实时的目标切换,同时主车HV(Host Vehicle)能够与跟踪目标车辆保持安全距离,实现车辆安全行驶。  相似文献   

20.
智能交通系统中基于机器视觉的数字车辆控制   总被引:3,自引:0,他引:3  
在描述成像模型与视觉坐标系的基础上,给出了基于计算机视觉的车道与障碍物辨识检测算法,应用预瞄转向以及车辆控制等技术手段来实现数字车辆的道路跟踪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号