首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
芜湖长江三桥为主跨588 m的非对称矮塔斜拉桥,其3号桥塔墩处水深约25 m,水下岩石直接出露,弱风化岩层厚4~9.5 m,其下为单轴抗压强度75 MPa的微风化岩石。从结构受力、施工便捷及经济性等方面,对桩基础和设置沉井基础2种基础型式进行比选,由于设置沉井基础受力明确、施工便捷、工期较短、经济性较优,推荐采用。对设置沉井基础的结构形式、基础底面高程、顶面高程及盖板与井壁的连接方式进行研究,确定3号桥塔墩设置沉井基础选择钢结构形式,基础顶高程-5.5 m、底高程-25.0 m,基底置于微风化闪长玢岩中,沉井盖板与井壁采用PBL剪力键与剪力钉连接,设置沉井基础为圆端形,平面尺寸为65 m×35 m,高19.5 m,平面分为21个井孔。对设置沉井基础施工期、运营期及船撞、地震特殊荷载工况下的结构受力进行检算,结果表明各工况下结构受力均满足要求。设置沉井基础解决了深水裸岩建设条件下常规桩基础施工困难的问题,开拓了新型深水桥梁基础型式。  相似文献   

2.
2016年5月10日,随着一声"拔球"命令的下达,混凝土倾注而下,芜湖长江公铁大桥3号桥塔墩基础开始封底施工(见图1)。该桥3号桥塔墩为国内首座设置式钢沉井基础,圆端型结构,平面尺寸65m×35m,高19.5m。沉井自2015年12月18日下水后,先后完成沉井溜放、围堰接高、  相似文献   

3.
正2016年5月10日,随着一声"拔球"命令的下达,混凝土倾注而下,芜湖长江公铁大桥3号桥塔墩基础开始封底施工(见图1)。该桥3号桥塔墩为国内首座设置式钢沉井基础,圆端型结构,平面尺寸65m×35m,高19.5m。沉井自2015年12月18日下水后,先后完成沉井溜放、围堰接高、注水下沉  相似文献   

4.
博罗大桥全长 10 83.2 6m ,主桥为 80m跨的中承式拱桥 ,下部构造 2 #、4#墩为沉井基础 ,采用圆端型砼沉井 ,长 2 .5m、宽 10m、高 15m。简要介绍沉井的施工方法及质量控制措施 ,供同类型桥梁施工提供一些可借鉴的经验。  相似文献   

5.
<正>2015年10月7日,随着最后一次"起爆"命令的下达,芜湖长江公铁大桥主桥3号墩水下钻爆施工(见图1)告一段落。主桥3号墩为桥塔墩,设置钢沉井基础,钢沉井平面为65m×35m的圆端型结构,高19.5m。由于基础处河床岩面裸露,无覆盖层,沉井下放前需要对原河床进行水下爆破施工,爆破深度5~12m,理  相似文献   

6.
由于建设条件的特殊性,嘉绍跨江大桥70 m跨径水中区引桥采用没有承台构造、墩柱和大直径桩基础直接连接的单桩独柱下部结构方案。该方案主墩墩、梁固结,横桥向两幅桥之间主墩墩顶设置了工字形截面混凝土横系梁;钢护筒全长45 m,底口、顶口标高分别为-35 m、+10m;桩基础直径3.8 m,单桩桩长105~111 m,均按摩擦桩设计,桩基础采用C30海工水下混凝土;主墩采用圆柱形墩,墩顶断面宽8.5 m,圆端直径与墩底断面直径相同,墩柱采用C40海工混凝土。  相似文献   

7.
常泰长江大桥主航道桥为主跨1 176m公铁合建斜拉桥,通过技术经济综合比选,桥塔基础采用沉井方案。针对超大型沉井基础截面尺寸大、自重重、入土深等问题,提出了减自重、减冲刷的新型台阶型沉井基础方案,通过模型试验及数值分析确定了沉井相关设计参数,并基于地基中土体的三维应力状态和摩尔-库伦强度破坏准则,建立了深大基础三维地基承载力计算表达式。沉井基础成功实施的关键是可控的取土下沉措施,研究了超大型沉井下沉机理,探明随着沉井平面尺度的不断增大,端阻力与井壁侧摩阻力相比逐渐成为控制因素,沉井下沉施工必须进行盲区取土。通过对沉井刃脚下土体破坏形态的研究,提出土体破坏的临界宽度控制法和台阶式取土法,可为沉井下沉施工提供指导。  相似文献   

8.
合福铁路铜陵长江大桥主桥为主跨630 m的三索面钢桁梁斜拉桥,其北桥塔3号墩采用圆端形沉井基础,沉井着床采用“二次定位、注水快速着床”的方案.为使沉井精确着床,采用MIDAS 2006有限元软件建立沉井和拉缆系统空间模型,模拟沉井着床过程,分析沉井着床过程中的偏移及拉缆索力变化规律,确定定位时沉井底与河床的距离为2 m.为减小冲刷、河床平面土质分布不均、波浪和涡激振动等对沉井精确着床的影响,分别采取了注水快速着床、绞锚纠偏回位、增加沉井边锚数量、增加边锚刚度、增加沉井质量或阻尼等措施.  相似文献   

9.
铜陵公铁两用长江大桥主桥为(90+240+630+240+90)m的五跨连续钢桁梁斜拉桥,该桥上层桥面布置6车道高速公路,下层桥面布置4线铁路,主梁纵向采用飘浮体系,主梁和桥塔下横梁间设置阻尼装置。主梁采用3片主桁,N形桁架,主桁采用全焊桁片式设计,公路和铁路桥面均采用密布横梁的正交异性整体钢桥面,下层桥面在受力较大的桥塔根部及压重区段采用箱形结构,每个竖杆处均设有三角形桁架式横联;桥塔为倒Y形C50混凝土结构,承台以上桥塔高212m;斜拉索采用三索面布置,桥塔两侧各布置3×19根钢绞线斜拉索。除深水区3号桥塔墩采用沉井基础外,其余主墩均采用桩基础,沉井基础为圆端形,上部18m采用混凝土结构,下部50m采用钢结构。  相似文献   

10.
为了解台阶型沉井附近水动力特性及沉井台阶位置对局部冲刷的影响,以优化沉井结构,以某桥大型台阶型沉井为背景,通过流体计算软件C FD建立三维定床水动力模型,分析该沉井台阶设置对水流流速和流速矢量、湍流动能、床面切应力等沉井附近水动力特性的影响规律;通过物理模型动床试验,分析台阶位置对最大局部冲刷深度的影响.结果表明:通过...  相似文献   

11.
温州瓯江北口大桥主桥为(215+2×800+275)m的三塔双层钢桁梁悬索桥,中塔采用沉井基础,沉井平面尺寸为66m×55m,高68m,其中,钢沉井高59m。为实现钢沉井的精确定位着床,采用锚墩+重力锚相结合的定位技术,在水流流速和风速较小的时间段,采用向井壁和隔舱内快速注水实现钢沉井快速着床。在钢沉井初定位、精定位及注水着床期间,运用实时监测技术,对钢沉井几何姿态及底面应力进行了实时监测,并及时对沉井偏位、扭转等采取纠偏措施。结果表明,着床后钢沉井中心点顺桥向偏北侧8.0cm,横桥向偏上游侧21.9cm,平面扭转角为-0.24°,钢沉井几何姿态控制良好。  相似文献   

12.
局部冲刷是涉水桥梁失效的主要原因之一。合理的桥梁基础局部冲刷估计,对保证桥梁基础的设计、施工和维护具有重要意义。基于CFD开展桥梁基础局部冲刷研究具有现场观测和水槽试验不具备的诸多优点。首先阐述了桥梁基础局部冲刷CFD模拟的控制方程、湍流模型和泥沙输运模型,以及报导的主要CFD模拟软件;介绍了国内外研究进展,总结了现有研究存在的不足,分析了其中的原因,探讨了局部冲刷CFD研究的发展方向。分析表明,现有CFD局部冲刷研究存在流动Re数过小、未考虑来流湍流特性或来流湍流特性估计不足、湍流模型对流动的非定常特性捕捉不足,以及采用经验性的定常流泥沙输运模型等问题,使得局部冲刷坑形态和最大深度估计与试验不符。一种有望解决上述问题的途径是采用大涡模拟数值求解欧拉-欧拉两相流方程,通过求解流体相和泥沙相的质量和动量方程,采用合适的泥沙相和流体相的压格子封闭模型,并合理模拟泥沙相内相互作用和泥沙相与流体相的相互作用,通过组合壁函数实现高效数值求解,以获得桥梁基础局部冲刷的合理估计,从而推动局部冲刷CFD模拟向大尺度模型和高流动Re数发展。  相似文献   

13.
近年来,桥梁水毁日益频发,已成为桥梁倒塌失效的首要因素。从冲刷、洪水2类最主要的水文因素出发,充分结合历史数据,分析并对比其对桥梁水毁的影响程度与规律;并按2类水文因素所对应的不同桥梁倒塌失效模式,对桥梁水毁现有的研究工作和方法进行总结归纳;最后,聚焦实桥应用,对现有桥梁水毁监测和诊治手段进行全面梳理。综述可得以下结论:①冲刷是导致桥梁水毁的最主要因素,所致失效桥型以桁架桥、梁桥、拱桥为主,桥梁服役时间、结构安全状态、年平均径流量均与桥梁所受冲刷程度存在较强相关性;②冲刷坑空间形态数值仿真与试验结果仍有一定差距,其泥沙模型缺少考虑床沙级配的影响,经验公式法尚需突破计算维度的局限性,完善考虑时间因素和黏性土的冲刷深度预测;③现阶段洪水波流竖向升力计算公式较少考虑脉动压力,浪荷载水槽试验尚未完全探明波浪特性与作用力间的联系,桥梁可靠度研究多见以冲刷为主的多灾害下联合效应计算,仍缺少波流、浪力作用与地震动水作用等其他灾害联合作用的深入探讨;④桥梁抗水目前仍局限于流场与结构域的独立研究,未见不同水文因素下基于结构域-流场多场耦合的桥梁失效模式分析;⑤雷达、声波以及潜水员水下检测是现阶段桥梁冲刷主流监测方式,桥梁冲刷动力识别适用于复杂环境下大规模、区域性桥梁检测,但仍有待进一步的应用研究,而既有桥梁水毁诊治手段在具体实施时需因地制宜,避免反而加剧水文病害。  相似文献   

14.
依托实际工程,应用数值模拟的方法分析圆形和矩形沉井在不同流速、流向等条件下桥墩周围流场分布情况,并与物理模型试验结果进行对比。结果表明,数值计算结果与物理试验结果吻合良好;交角不同,局部冲刷坑的外形轮廓也发生相应的变化。  相似文献   

15.
近年来,基础冲刷导致的桥梁灾害频发,冲刷已成为威胁涉水桥梁安全的重要原因。基于前人已有的成果,对近30年来桥梁基础冲刷领域的相关研究进行了系统分析。首先采用信息量化分析技术给出了近30年桥梁基础冲刷研究的创新研究成果参数,呈现了冲刷研究领域的知识结构体系,探索了其研究热点。研究结果表明:①桥梁基础冲刷研究论文数量呈现上升趋势,特别是最近几年论文数量增速加快,研究热度提高,其中一些主要文献表现出很高的被引用频率,受到研究人员的重点关注;②研究成果主要集中于桥梁基础冲刷机理、冲刷深度预测、现场监测方法和冲刷防护措施等方面;③研究的新兴热点涉及复杂桥梁基础周围的三维流场特性分析、基于不同算法和随时间演变的冲刷深度预测。此外,对跨海桥梁基础冲刷研究的进展进行了分析,总结了不同条件(水力特性、沉积物条件、基础结构形式及空间布置方式等)对跨海桥梁冲刷的影响;阐述了现有冲刷深度分析方法应用于跨海桥梁冲刷深度预测时存在的问题;对比分析了几种冲刷监测方法的优点、不足及精度影响因素;指出跨海桥梁基础冲刷需要加强对复杂海域环境下桩基冲刷机理、冲刷深度预测及冲刷安全监测评估方法的研究。最后提出:桩-土-潮流相互耦合作用的局部冲刷机理研究、排除水流及悬浮泥干扰的实时监测设备研发、考虑围垦等人类活动对跨海桥梁基础冲刷影响及包括冲刷在内的多灾害分析将是今后研究发展的趋势。  相似文献   

16.
贾界峰  鲍卫刚 《公路》2012,(4):21-26
从水动力和泥沙运动方程出发,采用雷诺时均的N-S方程,以k-ε双方程模型对紊流方程进行封闭,采用垂向分层的方法建立桥梁墩台冲刷的三维水动力模型。泥沙计算考虑悬移质和推移质泥沙输运,通过求解动网格方程更新整个计算域的网格坐标。通过数值模拟结果与模型试验结果的比较,建立的桥梁墩台冲刷数值模型具有较高的精度。  相似文献   

17.
沿河路基局部冲刷深度计算研究   总被引:1,自引:2,他引:1  
在对沿河路基局部冲刷影响因素如水流条件、河床沙条件和河流几何边界条件等进行分析的基础上,通过野外模型试验,观测了河流各断面的水深、流速、护墙的冲刷深度和冲刷的发展过程及护墙附近的水流形态。针对弯道凹岸沿河路基的冲刷,对比分析了已有的局部冲刷深度计算公式,采用量纲分析和多元线性回归的方法,建立了设置护墙后的沿河路基弯道凹岸局部最大冲刷深度的计算公式。依托模型试验,对护坦的减冲作用进行了定量分析;根据试验观测结果,采用回归分析方法,得到了设置护坦后的路基局部最大冲刷深度的计算公式。研究成果可供在确定路基冲刷防护工程结构形式和基础埋深时参考。  相似文献   

18.
芜湖长江三桥主桥桥墩均位于水中,需搭设施工浮桥用于水中墩施工混凝土输送及人员通行。芜湖侧浮桥布置于5号墩和3号桥塔墩之间,长272.3 m,跨径布置为(35.5+6×36+18)m,桥面净宽3.3 m。浮桥设计采用“浮箱+贝雷梁”结构,横向布置4榀贝雷梁,桥面板采用I10@750 mm分配梁+6 mm厚花纹钢板组成,桥面两侧设置混凝土泵管,人行道布置于混凝土泵管之间;共设7个浮箱,单个普通浮箱长12 m,宽6.1 m,由3根?2000 mm×8 mm钢管焊接组拼而成,浮箱两端钢管切割成尖端型以减小浮箱所受水流力,最中间浮箱长度设计为24 m,并在浮箱上、下游侧布设混凝土锚碇以提高浮桥整体稳定性。通过在顺水流方向设置预偏量以及水位变化时收放锚绳等措施,确保了在大桥建设期间施工浮桥安全稳固。  相似文献   

19.
牛思胜 《公路》2004,(8):72-76
在沿河公路路基冲刷防护中多采用挡土墙或石砌护坡。确定合理的局部冲刷深度 ,是确定挡土墙基础埋置深度的重要依据。在分析路基局部冲刷的影响因素基础上 ,结合甘肃省陇南地区沿河公路挡土墙的冲刷实测结果 ,探讨和建立新的局部冲刷计算公式 ,公式的计算结果与实测数据基本相符  相似文献   

20.
近年来,因基础冲刷引发的桥毁事故频发,冲刷会造成桥梁下部结构周围土体被破坏进而导致基础承载力下降,并且由于冲刷位置隐蔽增加了识别检测的难度。为了精准识别桥梁下部结构的基础冲刷损伤,利用车辆制动作用可引起更为显著的桥梁下部结构纵桥向动力响应这一特点,提出了一种基于车辆制动作用下桥梁动力响应小波包能量分析的连续梁桥基础冲刷识别方法。该方法选择典型三轴车制动作用作为动力激励,利用小波包对冲刷前后的车辆制动作用下桥墩顶纵桥向加速度响应进行分解,提出以小波包能量方差变化率作为冲刷识别指标,实现基础冲刷位置识别;进而通过数值模拟方法建立包含多种冲刷程度与对应测点冲刷指标值的样本库,拟合分析确定冲刷识别指标值与冲刷程度间的函数关系,通过识别出的各测点冲刷指标值基于模式反演方法实现冲刷程度的量化识别。一座混凝土连续梁桥工程实例的分析结果表明,该方法能够实现梁桥基础冲刷的定位和定量识别,抗噪能力强,且识别结果受桥面不平度、制动位置、车质量和初始车速等因素影响较小。该方法在试验过程仅需在桥墩顶安装加速度传感器,可借助常规的桥梁荷载试验项目实现,具有测试简便易行、识别精度好等特点,适于公路梁桥基础冲刷的快速检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号