首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
本文提供了一种估算内河船舶浅水阻力的方法。根据184条船模浅水阻力曲线及部分相应的深水阻力曲线,计算了经济航速、临界航速和不同航速下的兴波阻力系数。应用经修正的Prohaska方法计算了深、浅水形状因子。将上述这些量视为H/T、L/B、B/T和C_B的幂函数方程,应用回归分析确定其指数值。利用求得的回归公式即可进行深、浅水阻力计算,协助选择优良船型,进行主尺度分析,选配经济航速以提高营运经济性。本方法具有计算简便、适应范围广、计算精度高等优点。  相似文献   

2.
本文在船模试验的基础上,求得西漳船型单位排水量阻力与航速的最佳吻合曲线,从而提出一种简便实用的西漳船型深水阻力计算方法。再由深水阻力,按许立汀浅水阻力计算方法的原理,提出一种简便的浅水阻力计算方法。  相似文献   

3.
在循环水槽中进行船模试验时的边壁效应,包括阻塞、浅水和侧壁波浪反射等,会影响测试结果。论文通过非定常RANS数值方法针对排水型高速单体船开展循环水槽边壁效应研究,归纳边壁效应修正公式。通过数值不确定度分析验证了网格的合理性。通过数值模拟的循环水槽与开阔水域中船模阻力的比较,拟合速度增量,得到水深弗劳德数Frh <1时的修正公式。该修正公式反映了阻塞效应、浅水效应以及高速船阻力的特征,循环水槽修正后的阻力曲线与开阔水域的阻力曲线吻合良好。  相似文献   

4.
为了检验实验确定及经验公式估算形状因子方法的实用性,对长度分别为2.47~m、3.23~m及4.04~m的三艘几何相似的“西湖号”油轮船模系列阻力试验结果作了计算分析。计算结果表明: 以实验为基础的Prohaska方法及15 th I.T.T.C.推荐的修正的Prohaska方法是目前比较实用而又简便的估算形状因子的方法。但是在无试验资料情况下,也可选用适当的经验公式估算形状因子。  相似文献   

5.
考虑浅水影响的航速测量不确定度分析   总被引:1,自引:1,他引:0  
丁举  马向能 《船舶》2005,(4):1-4
受实船试航水域水深的影响,对于深吃水的大型船舶航速测量结果必须采用适当的方法进行航速的浅水修正.本文采用GUM测量不确定度分析方法,以某大型油轮为例,对考虑浅水影响的航速测量进行了不确定度分析.  相似文献   

6.
实船航速测试数据的风力影响修正方法探讨   总被引:1,自引:0,他引:1  
实船航速测试数据的风力影响修正方法有许多种,本文介绍的是一种以船舶的航速与阻力曲线或数据为基础的简明修正方法,并通过2700吨级箱形货舱货船的实船修正计算加以说明。  相似文献   

7.
分析9 艘圆舭型快艇船模浅水阻力系列试验资料,寻找每艘船模阻力变化规律,由108 条内插阻力曲线应用回归分析直接计算及依据深水阻力转换的间接计算分别计算浅水阻力曲线。可用于该类船型浅水功率估算及主尺度优化分析计算。对无浅水影响最小水深及超临界纵倾角也作了一定研究  相似文献   

8.
分析9艘圆舭型快艇船模浅水阻力系列试验资料,寻找每艘船模阻力变化规律。由108条内插阻力曲线应用回归分析直接水计算,及依据深水阻力转换的间接计算,分别计算浅水阻力曲线。对无浅水影响最小水深及超临界纵倾角也作了一定研究。  相似文献   

9.
本文介绍三只方形系数C_N(≈0.8浅吃水双艉鳍船模的试验结果。这是保持C_B、船长和排水量不变,变化B/T而得的三只相似线型船模,着重研究B/T对性能的影响。本文提供了阻力计算图谱、推进因子估算图谱和伴流场分析资料,并提供了湿面积计算公式和船长不同对阻力的修正系数。采用本文资料可方便地得到在研究尺度范围内的线型、阻力及推进因子资料。本船型有较佳的阻力性能、较高的推进因子及较均匀的伴流场。本文提供资料适用范围为L/▽~1/~3=5.72~5.414,C_B=0.803~0.813,B/T=3.30~5.20。  相似文献   

10.
张晓宇  胡开业  纪元  周雯雯 《船舶》2016,27(4):14-20
针对钻井船海上航行工程背景,考虑浮态变化对钻井船阻力的影响,采用粘性流体力学算法,对某艘有详细实验数据的钻井船在静水中的阻力性能进行计算与分析。通过研究网格划分形式与网格数量等因素对计算结果的影响,确定合理的网格划分方法,提高计算的准确性。之后,对一艘3 000 m深水钻井船进行计算,分析月池形状与航速等方面对钻井船阻力的影响,有较好的实际应用前景。  相似文献   

11.
[目的]从节能减阻方面对客滚船的主尺度比进行研究。[方法]利用模型试验和数值模拟的方法,研究船舶主尺度比(长宽比L/B、船宽吃水比B/T)变化对阻力性能的影响。[结果]结果表明,某700客位客滚船不同L/B方案之间的有效功率在较低航速时最大差异仅为150 W,在较高航速时最大差异增大到1300 W;不同B/T方案之间的有效功率在较低航速时最大差异为170 W,在较高航速时最大差异仅为300 W。[结论]研究发现:增大L/B值能够明显减小实船航速对应的模型阻力和实船有效功率;不同B/T方案的实船有效功率相差不明显。  相似文献   

12.
曹雪  杨启  凌良勇 《船舶工程》2013,35(2):9-12
利用CFD方法计算某内河大型自航绞吸挖泥船在浅水状态下的总阻力。在不同水深及不同航速下对船模周围流场进行数值模拟,计算过程考虑自由面的影响。将计算结果与模型试验作比较,计算结果有较高的可靠性。并通过分析这类船型的流场分布进一步理解船舶在浅水航行中的阻力成因。  相似文献   

13.
考虑到采用兹万科夫法计算山区河流船舶阻力的局限性,结合澜沧江500 t级机动船实船静水航速试验,分析船舶阻力试验结果与兹万科夫法计算结果的偏差,提出按总阻力系数、剩余阻力、剩余阻力指数进行修正的思路和方法,建立相应修正系数与船舶弗劳德数、船宽吃水比的函数关系,对比上滩航行与静水航速实船试验结果,进行二次修正,总结出总阻力和剩余阻力二次修正系数以及适用范围。  相似文献   

14.
以CFD为工具,探索了求取肥大船舶形状因子的新途径。通过比较分析,确定了叠模数值模拟方法中影响形状因子的主要因素。在此基础上,采用相同的网格生成方式和计算参数,对VLCC等10型船进行了形状因子计算,并与国外的试验取值进行了比较。将得到的形状因子用于7万t油船和VLCC的航速预报,与实船测试结果非常吻合,表明该方法可以用于确定肥大船舶的形状因子数值。  相似文献   

15.
针对动力艇尾流作用于被牵引船只,造成水阻力增加而使牵引效率下降的问题,提出通过数值模拟方法计算动力艇尾流场,进而确定合理的牵引间距的方法.文章应用理想推进器理论,给出了确定推进器尾流出口横截面面积和喷水流速的方法.在此基础上,通过数值模拟计算推进器尾流场的影响,并通过分析估计出给定牵引航速下的合理牵引间距.该方法可以结合动力艇的拖钩拉力与航速曲线,确定组合体可能达到的最大设计航速.  相似文献   

16.
为测量浅水对船模阻力换算中使用的船体形状因子的影响,我们在拖曳水池中进行了一系列船模试验。对7艘方形系数系列变化的模型进行了测量,它们分别代表从巡逻艇到油船等各种各样的船型。试验结果表明:形状因子值的确定与水深有关。本文给出了形状因子与吃水/水深比的经验公式。  相似文献   

17.
本文分析了16艘内河船变化4~5个水深的试验资料,寻找了浅水效应阻力增量的变化规律,确定了无浅水影响的最小水深以及受到一定浅水影响时的速度增量和损失的计算公式,且考虑了船型要素的影响。  相似文献   

18.
关于深水、浅水与限制性航道界定的探讨   总被引:1,自引:1,他引:0  
周华兴  郑宝友 《水运工程》2006,(1):53-58,67
通过对船舶阻力的分析和计算.根据影响阻力的主要因素,航速、水深与船吃水比、断面系数,由换算系数来界定深水、浅水与限制性航道。  相似文献   

19.
用五万吨级油轮“西湖”号的三艘几何相似船模的阻力试验结果,分析比较了第13届和第15届I.T.T.C推荐的由试验结果确定形状因子的Prohaska方法和修订的Prohaska方法,分析结果表明后者较为满意。用几何相似船模试验结果分析了F_n数的指数,当F_n范围取0.12~0.20时,指数在6.7~10.34间,当F_n=0.12~0.18时,指数在5.23~12.39间。用本所NO.1水池已有93艘肥大船模型试验资料分析了已有各家估算形状因子的经验公式,发现因各家水池测量系统精度和所用船型线型特征不同,故估算结果精度各异,必须用本水池的资料来建立自已的经验公式,以供应用。经过试验分析,推荐了一个有六个参数的公式作为我所使用的公式, 即: K=91.20C_B~(8.7)C_M~(66.72)/(L/B)~(1.99)(B/T)~(0.847)(B/L_R)~(0.964)LCB~(0.122)  相似文献   

20.
基于ITTC的实船试航航速修正方法   总被引:1,自引:0,他引:1  
依据ITTC 7.5-04-01-01.2,并结合ISO 15016(2002)中关于实船试航航速修正方法,以EXCEL为平台,通过VBA编写程序,建立了一种考虑风、波浪、水温、航行状态和浅水等影响因素的船舶试航航速修正方法,可以快捷方便地对试航航速进行修正,得到深水、无风、无浪、无流条件下的船舶航速、主机功率、螺旋桨转速及相应压载吃水和结构吃水工况下的S-P曲线。最后将软件应用于某散货船实船航速修正中,经对比分析表明其修正结果与船模试验的变化趋势是一致的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号