首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
为建立合理的动态交通网络中路段走行时间模型,分析了动态路段走行时间函数的一般形式,对比国内外常用的几种离散型动态路段走行时间函数,基于元胞自动机交通流模型,建立了动态路段走行时间模型。模型可以根据实际路段驶入率、驶出率,推算出任意时刻进入路段车辆的走行时间,并利用M atlab对模型进行求解和数值分析。结果表明,车辆进入路段后的交通状态是动态路段走行时间的主要影响因素;根据累积驶入驶出车辆数曲线可以直接求出动态路段走行时间,能够为动态交通网络中路径走行时间求解奠定基础。   相似文献   

3.
The emergence of new information technologies and the transformation that has occurred in traffic management have both increased drivers' already considerable need for road traffic information. The travel time is one of the forms in which this information is presented, and a number of systems are based on its dissemination. In this context, this indicator is used as a measure of the impedance (or cost) of routes on the network and/or a congestion indicator. This raises the problem of estimating travel times with an acceptable degree of accuracy, which is a particularly difficult task in urban areas as a result of difficultes of a theoretical, technical and methodological nature. Thus, in order to find out the traffic conditions that prevail on an urban road, the traffic sensors that are usually used to measure traffic conditions are ineffective under certain circumstances. New measurement devices (cameras, GPS or cellphone tracking, etc.) mean that other sources of data are increasingly used in order to supplement the information provided by conventional measurement techniques and improve the accuracy of travel) time estimates. As a result, travel time estimation becomes a typical data fusion problem. This study deals with a multisource estimate of journey times and attempts to provide a comprehensive framework for the utilization of multiple data and demonstrate the feasibility of a travel time estimation system based on the fusion of data of several different types. In this case two types of data are involved, data from conventional induction loop sensors (essentially flow and occupancy measurements) and data from probe vehicles. The selected modelling framework is the Dempster-Shafer Evidence Theory, which has the advantage of being able to take account of both the imprecision and uncertainty of the data. The implementation of this methodology has demonstrated that, in each case, better results are achieved with fusion than with methods based on a single source of data and that the quality of the information, as measured by correctly classified rates, improves as the degree of precision required of the estimate is increased.  相似文献   

4.
石小法 《公路交通科技》2007,24(12):113-116
针对交通网络中路径通行时间具有与时间相关的随机分布特性,将研究在此类交通网络上依赖信息的路径选择问题。在路径选择过程中引入交通信息,在随机交通网络上最优路径选择原则为下一节点的选择将依赖于已实现的路段时间及当前节点的出发时间,通过期望最小值方法,按照路径通行时间期望值最小原则,建立一种通过所获得交通信息来进行路径选择的优化模型,给出了模型的求解算法。并在简单交通网络上对模型进行实现。  相似文献   

5.
Day-to-day variation in the travel times of congested urban transportation networks is a frustrating phenomenon to the users of these networks. These users look pessimistically at the path travel times, and learn to spend additional time to safeguard against serious penalties that await late arrivals at the destinations. These additional expenses are charges similar to the tolls in system equilibrium flow problem, but may not be collected. With this conjecture, the user equilibrium (UE) formulation of congested network flow problem would lack some necessary factors in addressing appropriate path choices. This study, following a previous work proposing pessimistic UE (PUE) flow, aims to show how to measure this additional travel cost for a link, and investigates how different is PUE from UE, and when such differences are pronounced. Data are collected from the peak-hour travel times for the links of paths in the city of Tehran, to estimate the variance of travel times for typical links. Deterministic functions are obtained by calibrating the standard deviation of the daily variations of link travel times, and probabilistic functions by the technique of copula. UE and PUE traffic assignment models are built and applied to three large cities of Mashhad, Shiraz, and Tehran in Iran. The results show that the estimated flows by PUE model replicate the observed flows in screen lines much better than the UE model, particularly for longer trips. Since PUE is computationally equivalent to UE, this improvement is attained virtually at no cost.  相似文献   

6.
为了给公交优先信号配时系统提供足够的"思考"时间和准确的控制依据,基于重庆市RFID电子车牌数据提出了一种采用自适应渐消卡尔曼滤波和小波神经网络组合模型动态预测公交行程时间的方法。综合分析公交行程时间的动态和静态影响因素,选取的模型输入参量为标准车流量、路段车辆平均行程时间、平均车速离散性和前班次公交行程时间。利用RFID电子车牌系统采集重庆市鹅公岩大桥路段车辆行驶数据,选取3 000组实际运行数据完成公交行程时间预测模型的训练,另筛选50组数据验证模型的有效性和准确性。研究结果表明:组合模型可动态自适应预测公交行程时间,预测值平均相对误差为3.23%,绝对误差集中在8 s左右,明显优于2种单一模型和基于传统GPS数据的公交行程时间预测模型,可认为选择RFID电子车牌数据作为组合模型的输入,能够明显改善模型预测精度;组合模型预测值的残差分布更为集中、鲁棒性较好,泛化能力强。选择平均绝对误差值、均方根误差值和平均绝对百分比误差作为模型评价指标,结果进一步表明,组合模型的综合预测效果明显优于单一的自适应渐消卡尔曼滤波和小波神经网络。研究方案可为先进公交信息化系统提供良好的技术支撑。  相似文献   

7.
The advancement of information and communication technology allows the use of more sophisticated information provision strategies for real-time traffic management in a congested network. This article proposes a personalized system optimum traveler information (PSOI) system under ubiquitous communication, which allows traffic system operators to fully optimize and coordinate individuals' trip plans according to the personal attributes, such as real-time location, value of time, allowable budgets for congestion tolling, and willingness to take detours. We also developed an efficient queue-based evaluation and solution heuristic algorithm using mesoscopic simulation models to solve for near-optimal PSOI strategies—route suggestions for each individual traveler. The simulation optimization algorithm can account for different information users and provide predictive information that robustly accounts for potential decisions of other travelers in real time. Case studies were carried out on a test network and a real-world network, and the proposed heuristic algorithm is proven effective. Also, sensitivity analyses show that PSOI not only is an effective traffic management method in reducing average system travel time, but also potentially provides travelers with reasonable or even shorter travel times compared with other information users. Further, simulation results showed that even in mixed traffic, PSOI is able to shorten travel times for both users without information and users of other information types. Thus, PSOI is recommended by this article as an advantageous way for next-generation advanced information systems and dynamic traffic management.  相似文献   

8.
为解决传统行程时间可靠性测算算法应用于机场路网的不足,即未考虑实际路网运行情况以及机场旅客出行成本问题,分别引入路段拥堵修正因子以及成本因子,构建机场路网行程时间可靠性测算模型,并且引入路网标准速度,用最小误差平方和的方法对改进后的测算方法进行验证.以南京禄口国际机场集疏运路网为例,改进后的路网行程时间可靠性测算结果与实际路网标准速度的最小误差平方和,即LSE的值为0.57,比传统的测算结果小0.03,说明改进后的测算结果更接近实际路网行程时间可靠性.测算出南京禄口机场集疏运公路路段行程时间可靠性在0.69~0.89内,路网行程时间可靠性测算结果在0.65~0.78内,机场集疏运路网行程时间可靠性存在分布不均,核心路段行程时间可靠性低等现象.改进的测算方法,在一定程度上解决传统路网行程时间可靠性测算算法与实际路况脱节的问题.   相似文献   

9.
Developing travel time estimation methods using sparse GPS data   总被引:1,自引:0,他引:1  
Existing methods of estimating travel time from GPS data are not able to simultaneously take account of the issues related to uncertainties associated with GPS and spatial road network data. Moreover, they typically depend upon high-frequency data sources from specialist data providers, which can be expensive and are not always readily available. The study reported here therefore sought to better estimate travel time using “readily available” vehicle trajectory data from moving sensors such as buses, taxis, and logistical vehicles equipped with GPS in “near” real time. To do this, accurate locations of vehicles on a link were first map-matched to reduce the positioning errors associated with GPS and digital road maps. Two mathematical methods were then developed to estimate link travel times from map-matched GPS fixes, vehicle speeds, and network connectivity information with a special focus on sampling frequencies, vehicle penetration rates, and time window lengths. Global positioning system (GPS) data from Interstate I-880 (California) for a total of 73 vehicles over 6 h were obtained from the University of California Berkeley's Mobile Century Project, and these were used to evaluate several travel time estimation methods, the results of which were then validated against reference travel time data collected from high resolution video cameras. The results indicate that vehicle penetration rates, data sampling frequencies, vehicle coverage on the links, and time window lengths all influence the accuracy of link travel time estimation. The performance was found to be best in the 5-min time window length and for a GPS sampling frequency of 60 s.  相似文献   

10.
ABSTRACT

The deterministic traffic assignment problem based on Wardrop's first criterion of traffic network utilization has been widely studied in the literature. However, the assumption of deterministic travel times in these models is restrictive, given the large degree of uncertainty prevalent in urban transportation networks. In this context, this paper proposes a robust traffic assignment model that generalizes Wardrop's principle of traffic network equilibrium to networks with stochastic and correlated link travel times and incorporates the aversion of commuters to unreliable routes.

The user response to travel time uncertainty is modeled using the robust cost (RC) measure (defined as a weighted combination of the mean and standard deviation of path travel time) and the corresponding robust user equilibrium (UE) conditions are defined. The robust traffic assignment problem (RTAP) is subsequently formulated as a Variational Inequality problem. To solve the RTAP, a Gradient Projection algorithm is proposed, which involves solving a series of minimum RC path sub-problems that are theoretically and practically harder than deterministic shortest path problems. In addition, an origin-based heuristic is proposed to enhance computational performance on large networks. Numerical experiments examine the computational performance and convergence characteristics of the exact algorithm and establish the accuracy and efficiency of the origin-based heuristic on various real-world networks. Finally, the proposed RTA model is applied to the Chennai road network using empirical data, and its benefits as a normative benchmark are quantified through comparisons against the standard UE and System Optimum (SO) models.  相似文献   

11.
ABSTRACT

Conventional travel time reliability assessment has evolved from road segments to the route level. However, a connection between origin and destination usually consists of multiple routes, thereby providing the option to choose. Having alternatives can compensate for the deterioration of a single route; therefore, this study assesses the reliability and quality of the aggregate of the route set of an origin-destination (OD) pair. This paper proposes two aggregation methods for analyzing the reliability of travel times on the OD level: 1) an adapted Logsum method and 2) a route choice model. The first method analyzes reliability from a network perspective and the second method is based on the reliability as perceived by a traveler choosing his route from the available alternatives. A case study using detailed data on actual travel times illustrates both methods and shows the impact of having variable departure times and the impact of information strategies on travel time reliability.  相似文献   

12.
公交时空可达性是衡量人们利用公交系统出行的难易程度,模拟公交时空可达性,并分析其影响因素,对于提高交通资源利用效率具有重要意义。提出1种基于蒙特卡罗的城市公交可达性的模拟方法,并研究道路拥堵状态和公交发车间隔对公交可达性的影响。利用等时线模型提出公交可达性的度量方法。将公交出行时空过程划分为候车、乘车、靠站、换乘4个阶段,构建每个阶段的时间模型,从而建立公交可达性的蒙特卡罗模拟模型。模型的参数值均由实际的公交GPS数据标定。建立理想的棋盘状公交路网,并进行不同道路状态下和不同公交发车间隔下的模拟,数值模拟结果表明,在弱作用力下时,可达性增长速度提高了近5倍。   相似文献   

13.
支持向量机在路段行程时间预测中的应用研究   总被引:1,自引:2,他引:1  
主要探讨支持向量机理论在路段行程时间预测中的应用。具体的方法是,首先将研究路段根据路段交通状态和车辆检测器设置情况进行分段,然后以前几个时段的各个小路段的交通流量、平均速度和车道占有率和整个路段的行程时间为输入,以下一时段的整个路段的行程时间为输出,选取高斯径向基函数作为核函数,建立了基于支持向量机的路段行程时间预测模型,从而探讨支持向量机在路段行程时间预测中的应用效果。最后,利用交通仿真软件的模拟数据进行验证,并与BP神经网络计算结果比较,计算结果的对比表明本文提出的方法预测效果更好。  相似文献   

14.
信息诱导是缓解交通拥挤的有效途径,为了描述道路拥挤程度对出行者路径选择决策的影响机理,基于累积前景理论分析了出行者的出行决策过程,分析了出行者拥挤认知模式以及不同出行方式的拥挤信息需求。解析了拥挤阈值的概念,将行程时间作为累积前景理论决策指标建立了拥挤阈值的计算模型,以1个简单路网进行算例分析,模拟驾驶员的拥挤认知及出行活动决策。算例结果揭示了拥挤阈值对路径选择决策行为的影响,同时验证了拥挤阈值是出行者在决策过程中的决策变化分界点。出行时间在拥挤阈值内出行者不改变出行路径;出行时间超过拥挤阈值,出行者将改变出行路径。   相似文献   

15.
针对上海6处停车换乘(P+R )点位使用率有高有低的情况,展开P+R用户选择行为调查。初步调查发现出行时间是最重要的影响因素,其次是出行费用。为研究结论普适性,采用网络观测辅以实际行程时间调查的方法,对高峰时段6个换乘点位的典型通勤路径的自驾、P+ R方式的出行成本进行了调查。分析发现,上海P+R设施应分为城区内和城郊设施2种类型;P+ R用户并非全部由自驾出行人员转换而来,也转自于公交+地铁或出租+地铁等其他出行方式人员;其中,自驾出行人员对时间节省最关注,道路通畅时其时间价值要低于交通拥堵时;公共交通出行人员由于出行时间节省而选择P+R;出租+地铁及普通停车换乘用户更关注出行费用;P+R有助于促进多模式交通出行,公交配套不完善地区P+R需求更大。   相似文献   

16.
道路网络起讫点(OD)需求是城市决策长期交通规划和短期交通管理中的基础参数,准确的交通需求更是实施交通拥堵控制、限行限速、路径诱导等措施的先决条件。综合运用观测的轨迹已知和未知路径出行时间,建立随机网络交通需求估计双层规划模型。上层广义最小二乘模型最小化历史交通需求与待估交通需求、观测路径出行时间与待估路径出行时间之间的偏差,约束为交通需求、路段流量、路段出行时间与路径出行时间之间的传播关系,通过高斯混合模型(GMM)对其中轨迹未知的观测出行时间依概率聚类。下层为随机网络交通出行均衡模型,分别运用出行时间预算和随机用户均衡处理路网不确定性和出行者感知误差。上、下层之间通过交通需求和OD-路段关联比例进行信息传递。设计迭代算法框架求解双层规划模型,迭代算法包含求解上层模型的最速下降法、求解下层模型的相继平均算法和求解GMM模型的最大期望(EM)算法。通过算例表明轨迹未知的路径出行信息的加入在提升需求估计精度的同时也增大了估计值的方差;设计的迭代算法能够稳定收敛到10-5的精度;GMM软聚类方法估计的交通需求显著优于硬聚类方法估计的需求值;交通需求值对观测路径出行时间的扰动更加敏感。研究考虑出行者风险态度,通过轨迹信息的重新构建揭示城市交通需求演化规律。  相似文献   

17.
降级路网的认知及交通流平衡分析模型   总被引:6,自引:3,他引:6  
为定量衡量因路段降级原因导致路网通行能力的丧失量,分析出行者在降级路网中的路径选择行为将导致何种网络交通流平衡状态,通过将降级路网划分为车流外界因素导致路段可通行能力降级和路段上车流量增加导致道路服务水平的下降两种类型,辨别旅行时间长短与旅行时间波动对出行者路径选择行为的影响,推导出同时考虑这两方面因素影响的可变路径旅行时间风险度量;在此基础上建立了降级路网中的交通流平衡分析模型,该模型满足存在性和惟一性,并能正确描述出行者对降级路网结构认知差异性情况下的网络交通流平衡状态。通过实例展示了不同旅行可靠性要求下,出行者对路径旅行时间长短的权衡关系以及整个路网交通流平衡结果。  相似文献   

18.
This paper considers the rationality of travel practices with regard to journey times. The problem can be formulated as follows: to what extent is modal choice determined by a qualitative rather than a quantitative comparison between journey times? Modal choice for home-to-work trips in the conurbations of Grenoble, Geneva, Lausanne and Berne among a representative sample of 2,000 employed persons faced with an alternative is analyzed. The study on which the paper is based explores two directions: the first examines the perception of journey times and the second considers the rationality of users' modal choice with regard to real and perceived travel times. This dual analysis reveals that although users do not necessarily attempt to minimize their home-to-work travel time, they do try to avoid time spent travelling that is impossible to put to good use because of a lack of comfort or flexibility. Furthermore the results show that the quality of time and the speed at which time passes are linked: when use can be made of the journey time it passes quickly, when it cannot it passes slowly and is viewed in the same way as a long waiting time. Such poor quality is a frequent characteristic of public transport. Ultimately, the study shows that while the comparison between journey times is a criterion for modal choice it only takes on meaning in relation to the form and content of the time. While most respondents prefer their car to public transport it is as much on the grounds of flexibility and quality of the time as on the grounds of speed.  相似文献   

19.
山地城市居民出行特征分析   总被引:1,自引:0,他引:1  
在归纳山地城市形态和道路网结构特征的基础上,根据2010年攀枝花市居民出行调查数据,对攀枝花市居民出行方式、出行时耗、出行时空分布等特征进行了分析,发现城市形态与路网结构对于居民出行特征有着重要影响.  相似文献   

20.
运行时间可靠度在单向交通组织中的应用   总被引:2,自引:1,他引:1  
运用网络可靠性计算的串并联理论,提出了道路网络中节点OD(Origin-Destination)对之间的路径运行时间可靠度计算方法,建立了基于节点OD需求的路网运行时间可靠度计算模型。在节点OD需求已知的情况下,根据交通组织状况,采用动态交通分配和交通仿真方法获得模型参数,计算节点OD对之间分别在双向和单向交通组织条件下的运行时间可靠度,并建立交通组织方案的临界判别条件,作为单向交通组织方案评价和决策的量化指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号