首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于高空高强大体积混凝土,由于实际施工条件的限制,规范规定的冷却水温与混凝土温差、降温速率等温控指标往往较难实现。以贵州平塘特大桥为背景,参照规范"大体积混凝土内表温差应不大于25℃"的温控指标,对人工冷却降温措施进行了优化。通过主塔实心段温控过程中实测温度结果与有限元仿真模拟的对比分析,提出了冷却水温与降温速率控制指标的优化方法。按此方法进行温控的平塘特大桥主塔大体积混凝土未出现有害裂缝,取得了良好的控制效果。此方法可为同类大体积混凝土温控提供参考与借鉴。  相似文献   

2.
为了减少大体积混凝土分层,减少施工工序,控制施工时间,克服冷却管在厚度方向降温效果不显著的问题,提出一种采用埋设冷水管和预埋垂直钢管降温法相结合的空间立体冷却网来解决温控问题。依托实际工程,模拟无温控措施、布设冷却管和布设空间立体冷却网不同工况下一次性浇筑厚度为单层厚和双层厚的分层浇筑过程,结果表明在混凝土浇筑厚度较厚时采用空间立体冷却网进行温控,能够有效降低施工期的温度和温度应力,将该施工工艺与分层连续浇筑施工有效的结合起来,可以达到缩短工期的目的。  相似文献   

3.
《公路》2017,(6)
依托某大桥承台的大体积混凝土在10℃和20℃施工温度工况,对混凝土的内外温度及温差进行了计算,基于计算结果,给出了总体温控施工方案。结果表明:在10℃和20℃施工温度下,大体积混凝土施工内外温差均不大于25℃,采用合理厚度的泡沫板保温措施进行承台混凝土养护即可满足混凝土温控要求;建议采用安装冷却水管、埋设测温监控、控制混凝土浇筑和养护质量等方法来进行大体积混凝土的养护及温度控制。  相似文献   

4.
通过对大体积混凝土产生裂缝的原因进行分析,结合禹门口黄河公路大桥主桥施工现场的实际情况和以往多个大体积混凝土项目的施工经验,提出了优化混凝土配合比初凝时间、对混凝土表面进行保温养护、控制混凝土浇筑温度等一系列措施。在第一个承台分层浇筑过程中,合理布置冷却水管,埋设测温元件,对整个施工过程进行全面监控,并整理分析测量数据,反馈施工过程中存在的问题,及时调整温控措施并运用到第二个承台施工中,有效控制了禹门口黄河公路大桥主桥大体积承台混凝土有害裂缝的产生。  相似文献   

5.
通过在规程编制过程中对大体积混凝土定义、温控指标取值、水化热温度应力计算等几个主要问题的研究,阐述了大体积混凝土温控技术的主要内容,以引起各方的重视,确保大体积混凝土的工程质量。  相似文献   

6.
斜拉桥下塔柱大体积混凝土温控研究   总被引:1,自引:0,他引:1  
大体积混凝土由于其聚集的水化热高且混凝土散热困难,因此温度裂缝控制是大体积混凝土施工的关键。该文结合工程实例,依据温控标准,提出温度控制措施,通过Midas软件模拟大体积混凝土的温度场,分析混凝土浇筑、水管冷却及边界条件等因素对其温控的影响,并制定相应的温度监测方法以检验温控标准和措施效果。其数值分析与现场监测结果达到较好的吻合。  相似文献   

7.
为防止C50高标号大体积混凝土因温度急剧变化所产生的内应力引起裂缝病害,本文采用有限元仿真软件模拟分析了实际服役环境下混凝土内部温度及温度应力场随龄期的变化。根据分析结果采取了在混凝土内部搭建冷却水管的温控措施,在施工过程中,通过预先埋设温度测量元器件来实时监控混凝土内最高、最低温度及内表温差,监测数据指出承台混凝土最高温度达55. 3℃,最大内表温差20℃,拆模后混凝土未出现裂缝,混凝土质量良好。  相似文献   

8.
思贤窖特大桥承台大体积混凝土温度控制   总被引:1,自引:0,他引:1  
以贵广铁路思贤窖特大桥施工为例,介绍大体积混凝土温控措施。优选混凝土配料,优化混凝土配合比;降低骨料及搅拌用水的温度,选用合理的运输及浇注方式,确保混凝土浇注温度;混凝土内部合理埋设冷却水管,根据温度监测数据控制冷却水流量及进水温度,有效控制混凝土内外温差,确保混凝的内在和外观质量。  相似文献   

9.
提出一种考虑大体积混凝土与基岩的接触热阻及冷却管与混凝土之间流动传热的水化热分析方法。采用面-面接触单元模拟混凝土与基岩之间的热接触效应,采用热-流耦合单元模拟冷却管与混凝土之间的流动传热过程。以某大跨度上承式钢管混凝土拱桥为背景,对天然冷却和水管冷却两种条件下拱座的水化热温度场进行了仿真分析。结果表明:热接触效应对大体积混凝土芯部温度影响很小,而对基岩与混凝土交界面附近的温度分布影响较大,在大体积混凝土水化热分析中,宜考虑基岩接触热阻的影响。  相似文献   

10.
通过在施工前进行温控计算,施工过程中采取原材料的选择和温度控制、混凝土的配合比优化、施工的现场监测等技术措施,确保大体积混凝土不出现因温度变化引起的裂缝.该工法适用于各种大体积混凝土施工.  相似文献   

11.
《中外公路》2021,41(3):83-88
桥梁的承台混凝土体积大,施工措施不当易产生温度裂缝,从而影响桥梁结构的耐久性,因此有必要对大体积混凝土施工温度场及温控技术进行研究。该文以南沙港铁路西江特大桥承台施工为背景,对自然冷却时温度场的变化规律进行数值分析,并对冷却水管的布置方式进行对比分析,进而开展承台智能温控系统设计和现场施工实践。结果表明:夏季自然冷却状态下,承台内部大部分区域温度场趋于一致,在靠近外侧面附近温度略有下降,在靠近顶部附近温度梯度较大;冷却管长度对散热影响较小,分区布置管道(冷却水从独立直管进入,从蛇形管流出)降温效率高,所设计并采用的智能温控系统具有较好的温控效果。  相似文献   

12.
灌河大桥主塔承台大体积混凝土施工时,根据仿真计算得出温度应力场,提出了相应的温控标准,采取了优化配合比、匀质化施工、混凝土配制环节的原材料温度控制和浇注环节的冷却降温等措施。浇注过程中开展温度监控,动态调整温控措施,使混凝土内部温度和内表温差均控制在标准范围内,从而有效地控制了混凝土内部的温度应力,防止了大体积混凝土的开裂,提高了构件耐久性。  相似文献   

13.
《公路》2017,(10)
对大体积混凝土温度控制采用风冷却技术的可行性进行探讨,通过试验模拟,研究了不同管材、管径大小、是否加湿等工况下对风冷却技术降温效果的影响,并与不同流速下通水降温效果进行对比研究。试验结果表明:选用1.1mm壁厚、70mm直径、6063型铝合金管作为冷却风管,在加湿状态下,采用11m/s的风速对大体积混凝土进行温度控制优于30L/min通水降温的降温效果,证实大体积混凝土采用风冷却在技术上是有效可行的。  相似文献   

14.
为研究南洞庭湖特大桥塔座及首节塔柱大体积混凝土在浇筑过程中的温度应力水平,采用有限元仿真软件建立模型,分析现场浇筑情况下大体积混凝土温度及温度应力随龄期的变化情况,对比混凝土中有无设置冷却水管对大体积混凝土温控的重要影响。  相似文献   

15.
苏通大桥南塔墩承台超大体积混凝土施工温控关键技术   总被引:8,自引:0,他引:8  
苏通大桥南主塔墩承台为超大体积混凝土,为防止出现温度裂缝,施工中采取了合理分层、双掺技术、内散外蓄、温度应力监测等温度控制措施,有效地控制了混凝土的最高温升和内外温差,施工后的承台质量,达到内实外美,未产生温度裂缝,并根据实际监测数据与温控理论计算进行了对比分析。  相似文献   

16.
以某特大桥为工程背景,结合大体积混凝土施工特点对温控方案及相关技术措施进行了详细阐述,并通过现场监测数据得到了相关的分析结果。通过筛选性能优良的原材料,利用粉煤灰的自身优势优化混凝土配合比,实行分层浇筑混凝土,布设循环水冷却管,进行保温保湿养护,结合现场实际情况对养护时间合理延长等,并实行承台施工前、中、后期的全过程温度监测,经温度对比分析后给出温控调整方案,实行信息化施工,为温度调控提供数据依据。实践证明,实施温度监测并采取合理的温控关键技术措施,能够科学地指导施工,各项温控指标均达标,有效地预防了结构表面温度裂缝,确保了结构的施工质量,为后期工作提供了保障,对同类施工项目提供了参考。  相似文献   

17.
刘方华 《公路》2022,67(3):143-147
在传统大体积混凝土施工中采用冷却水管进行混凝土内部降温,达到內降外保的效果。采用混凝土水化热温升抑制剂,取消冷却水管,既可达到大体积混凝土温控要求,又可以减少冷却水管的投入。  相似文献   

18.
非洲地区基础工业差,优质混凝土原材料选择空间小,且混凝土单次浇筑方量大,强度等级高,施工环境恶劣,导致大体积混凝土温控难度大。为了降低大体积混凝土温控指标,避免出现温度应力裂缝,通过优化配合比设计,在混凝土结构物中布置循环冷却水管,取得了良好的效果,为非洲地区类似工程提供了借鉴。  相似文献   

19.
文中依托某桥主墩承台大体积混凝土工程,对大体积混凝土进行了温度场数值模拟和现场温度监测结果分析。通过ANSYS有限元分析软件,采用SOLID70热单元,选定与施工温度监测相同的断面进行有限元分析。此外,利用实测温度和冷却水管出入口水温温差,对本工程的大体积混凝土温控技术进行评价。  相似文献   

20.
大体积混凝土温度控制与防裂是一项系统工程,施工前和施工中的系列温控措施均对后期混凝土的内外温差和抗裂性能有重要影响,在设计和施工中必须制定合理的温控指标和采取严格的温控措施,将裂缝的生成和扩展控制到最小程度。该文以澧水大桥大体积混凝土工程为背景,通过优化混凝土配合比、原材料温度控制、有限元仿真计算、施工中的温度控制与监测、冷却降温等一系列具体温控措施的应用,有效地防控了温度裂缝的出现,为同类工程积累了经验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号