首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 143 毫秒
1.
为改善网联自主车辆(CAV)的跟车安全和效率,针对CAV通过对周围环境进行感知进而进行自主决策的特点,首先,建立包含车道线势场、道路边界势场和车辆势场的安全势场模型,系统地刻画CAV在行驶过程中面临的安全风险,在安全势场模型的建立过程中,针对现有车辆势场函数存在引力和斥力表达式分割独立的缺陷,借鉴分子间相互作用关系建立统一的基于LennardJones势的车辆相互作用势场函数,并将加速度参数引入到车辆势场中,加速度的变化直接影响车辆势场的分布,能够有效地反映车辆在不同运行状态下安全势场的动态变化趋势;然后,将安全势场应用于CAV跟驰行为决策,并通过上海自然驾驶数据集标定模型参数;最后,选择与现有经典的智能驾驶人IDM和可变车头时距VTH模型进行仿真对比。结果表明:与其他两种模型相比,该模型在所设计的3种交通场景中有更平滑的响应曲线来改善跟车安全和效率,验证了模型的有效性。研究成果可为CAV的上层控制设计提供理论支撑,也为CAV安全技术的研究提供了 独特的途径。  相似文献   

2.
为进一步提高混合交通环境下车辆的行车效率与交通流的稳定性,在考虑后视效应的基础上,融合多辆前车速度与加速度等状态信息,以指数平滑方式构建了网联自动驾驶车辆(CAV)跟驰模型;在此基础上,研究了前后方车辆数和状态信息完整度对模型稳定性的影响,结合Lyapunov第一方法和线性谐波微扰法进行了线性稳定性分析,并确定了模型最优参数;利用混合交通环境特性,在考虑通信信息丢失的情况下提出了CAV在不同位置和状态下的跟驰策略,并在该策略支撑下进行了不同CAV渗透率的车辆启动、车辆刹车停止、环形道路3个典型场景下的数值仿真。研究结果表明:在刹车停止场景中,全部车辆的停止波速最大提高了26.1%;在车辆启动场景中,启动波速最大提高了15.5%,车辆加速度和速度变化更为平缓;在环形道路场景中,当混合交通流中CAV渗透率由40%提高至100%时,在较大扰动条件下车辆的平均速度波动时间相较于低CAV渗透率场景下降了44.8%,波峰下降了5.7%,波谷上升了19.4%,而CAV渗透率较低时提出的优化策略对混合交通流的改善并不明显。由此可见,在当前构建实际混合交通环境与开展CAV实车试验比较困难的情况下,该跟驰...  相似文献   

3.
合流区作为港区集疏运道路系统的重要组成部分,是联系匝道和主线车道的关键节点。其通行能力的大小往往影响着匝道、主线的运行情况。区别于传统的建立在对城市道路基础上的车辆折算系数,在实测交通数据的基础上,对合流区的车型按照车辆对道路的占有率分成4种车型,并且分析这4种车型形成的车头时距特征,以此推出车辆折算系数计算模型,进而计算合流区的理论通行能力值,最后通过标定参数的VISSIM仿真对合流区进行合理的分析。  相似文献   

4.
为提高高速公路匝道合流区的运行效率、减少交通事故的发生,面向网联自动驾驶车辆(Connected and Automated Vehicles, CAV)与人工驾驶车辆(Human Driven Vehicles, HDV)混行的交通场景,提出高速公路匝道分层协作合流框架,该框架集成合流序列调度算法和协作合流算法,并根据车辆类型与车辆状态进行实时调整。首先,提出一种基于启发式规则的高速公路合流序列实时调度算法,优化合流区车辆的合流顺序,解决了传统固定合流序列无法适应HDV驾驶行为随机扰动的问题。然后,根据合流序列调度算法及当前车辆位置,判断协作合流的车辆组及其车辆类型,分别建立CAV-CAV、CAV-HDV和HDV-HDV的协作合流控制算法。通过试验仿真发现:相较于无控制情况和“先进先出”策略,总延误分别降低了21.66%、39.88%;协作控制区长度对燃油经济性存在一定影响,能耗随着距离的增加而减小,并存在一个最小值,即300 m,到达该值后能耗将逐渐增大;车辆之间车头时距的增加,对减小车辆能耗存在一定的影响。其中,HDV之间车头时距的影响大于CAV之间车头时距的影响。  相似文献   

5.
讨论了城市快速路匝道合流区汇入车辆的车辆折算系数(PCE)计算的理论和方法。基于上海市快速路实测数据,从匝道车辆汇入主线的过程分析出发,考虑各类车型车身长度、车辆性能和主线外侧车道车头时距分布等因素对车辆汇入主线的影响,根据间隙接受理论和不同主线流量下各类车型的匝道汇入能力,建立了匝道合流区汇入车辆折算系数模型,并给出了在充分加速汇入和停车汇入两种汇入模式下PCE的建议值。研究表明:PCE值与汇入模式和主线外侧车道流量有很大关系,其与主线外侧车道流量呈正相关性,在同等主线外侧车道流量下,充分加速模式较停车汇入模式的PCE值小;在计算匝道合流区通行能力时不应对汇入车辆的PCE简单的取一定值。  相似文献   

6.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。   相似文献   

7.
为了跟踪近年来智能网联汽车(CAV)协同生态驾驶策略的研究进展, 分析了车辆、驾驶行为、交通网络和社会这4类因素对CAV能耗的影响程度, 以车辆、基础设施和旅行者为对象对目前CAV生态研究进行分类, 重点分析了信号交叉口生态驶入与离开、生态协同自适应巡航控制、匝道合流区生态协同驾驶、生态协同换道轨迹规划和生态路由5种典型车辆协同生态驾驶应用场景的研究现状。分析结果表明: 相比人类驾驶方式, 在任何交通流量CAV 100%渗透率的条件下和低交通流量CAV部分渗透率的条件下, CAV油耗节省效果显著, 最高可达63%, 而具有部分智能化和网联化等级的CAV油耗可至少节省7%;现有研究较少考虑人机共驾情况下, 驾驶人反应延迟和自动控制器传输延迟导致的轨迹跟踪偏离; 现有研究将车车通信/车路通信假定为理想数据交互过程, 未考虑通信拓扑、传输时延、通信失效与基站切换等因素对CAV生态协同驾驶策略的影响; 现有研究较少探讨多车道、交叉口转向-直行共用车道和U型车道等交通场景, 以及不同智能网联等级CAV与人类驾驶汽车、行人、自行车等共存的混合交通条件下的生态驾驶策略; 受限于自动驾驶技术和基础设施尚未成熟和完善, 真实交通场景下的测试验证工作尚未开展; 车辆控制、车车通信、多车协同、混合交通流场景、半实物仿真测试和真实交通场景测试等方面将是CAV协同生态驾驶策略的进一步发展方向。   相似文献   

8.
针对传统人驾车(HV)和网联自动车(CAV)组成混合交通条件下的快速路道路缩减瓶颈问题,从群体控制角度,提出了一种新的速度协调控制策略(简称节流控制策略);基于瓶颈交通状态和Greenshields模型,设计了领航CAV速度控制器;面向CAV节流群体组群过程的控制问题,提出了目标切换下的非线性控制器;构建了CAV节流群体类队列控制器,实现了基于瓶颈交通状态的群体形态与群体速度动态调节,进而联合领航CAV速度控制方法,周期性管控超过每组节流群体的车辆;提出了CAV纵向安全控制器来解决组群和群体演化过程的车辆安全问题。仿真结果表明:在快速路瓶颈路段下,对比传统交通系统,提出的动态节流控制策略CAV渗透率达到5%,在车流量分别为2 000、3 000、5 000、6 000 veh·h-1条件下,可对应分别提高通行效率约5.87%、16.97%、11.07%、10.25%;在固定车流量为3 000或6 000 veh·h-1的快速路混合交通瓶颈路段中,对比传统交通系统,若CAV渗透率分别为10%、20%、30%,受控交通系统的通行效率可提升约24%;通过对车头间距分析,受控CAV在节流全过程中无碰撞事故发生,且可与前车保持9 m以上安全距离。可见,节流控制策略在应对快速路瓶颈问题是有效的。   相似文献   

9.
基于智能网联车辆(Connected Autonomous Vehicle, CAV)跟驰特性,本文研究CAV跟驰模型.考虑多前车电子节气门角度反馈,构建CAV跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件.以考虑3辆前导车的CAV跟驰模型为例,设计数值仿真实验,分析不同CAV比例时混合交通流的安全性.模型稳定性分析表明:所提模型相比已有模型(CAV的T-FVD模型及常规车辆FVD模型)具备更优的稳定域,且考虑前车数量越多、多前车反馈权重系数越大,所提模型的稳定性越好;相同取值条件下,距离越远处的前车反馈权重系数对所提模型稳定性的影响越大.数值仿真表明,CAV有利于降低交通流的车辆尾部碰撞安全风险.  相似文献   

10.
为了对地铁车辆的运行性能实现更准确的评估和更有效的优化,借助有限元理论和子结构理论建立了车体和转向架构架等关键零部件的柔性动力学模型;基于天棚半主动控制算法和柔性多体动力学理论,建立了考虑半主动控制悬挂的地铁车辆刚柔耦合动力学模型;考虑轨道随机不平顺的影响,研究了半主动控制悬挂以及结构柔性对地铁车辆运行稳定性和乘坐舒适性的影响。研究结果表明:相对于传统的悬挂装置,天棚半主动控制极大降低了车辆的振动加速度,并使其变化趋势更加平缓,对车辆的低频振动有明显的抑制作用;采用本文的研究参数,天棚半主动控制在直线段可使车辆的垂向Sperling指标和垂向振动加速度均方根(RMS)分别降低26.8%和7.5%,使车体横向Sperling指标和横向振动加速度RMS分别降低8.8%和4.9%,而在曲线段,天棚半主动控制可使车辆垂向Sperling指标和垂向振动加速度RMS分别降低25.1%和5.7%,使横向Sperling指标和横向振动加速度RMS分别降低15.6%和8.3%,车辆的乘坐舒适性和运行稳定性大幅提升;考虑结构柔性时,车辆的垂向Sperling指标和垂向振动加速度RMS相比于未考虑结构柔性时分别增大了4.3%和6.8%,横向Sperling指标和横向振动加速度RMS分别增大了3.0%和3.4%。可见,车体和构架的结构柔性对车辆的动态特性有较大影响,在对车辆运行稳定性和乘坐舒适性进行计算和评估时不可忽略。   相似文献   

11.
为解决城市发展带来的交通拥堵问题,发掘道路交通的潜力,提高车路协同环境下车辆在路网中的行驶效率,面向群体车辆提出了一种诱导优化方法和协同控制策略;在车辆诱导分配方面,在起始点和目的地之间的可达路径中,以交通效率最优、车辆排放最小为目标,设计了基于道路饱和度、车辆行程时间和延误的群体车辆分配规则,建立了群体车辆诱导分配优化模型,并用多目标非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)和多目标粒子群优化算法进行求解;在车辆协同运行控制策略方面,基于引力场思想建立了多车协同运行模型,并提出了多车协同加减速策略;通过仿真验证比较了不同网联自动驾驶车辆(CAV)渗透率下的车辆诱导优化结果,同时仿真了车辆协同加减速策略,并将诱导优化方法和协同控制策略进行了联合仿真。仿真结果表明:多目标诱导分配方法可以提升车辆速度和环境效益,且群体车辆平均速度与CAV渗透率正相关;在四车组队行驶环境中,车辆协同加减速策略能够将车辆在加速和减速时的初始平均加速度分别提高15.0%和8.2%,让车辆快速达到目标速度,保障行车安全;在联合仿真环境中,路网群体车辆的加速度平均提高了11.6%,速度平均提高了1.6%,碳氧化合物排放量减少约4.9%。由此可见,提出的方法能够提高路网通行效率,降低车辆能源消耗,减少对环境造成的不良影响。   相似文献   

12.
新型混合交通环境下的交叉口交通控制可通过信号灯控制与自动驾驶车辆的轨迹控制协同实现,能够极大地优化道路通行资源利用效率。已有研究中,信号配时与车辆轨迹集中优化的控制策略难以应用于车辆自组织控制的现实场景,且往往计算复杂度较高。本文提出一种无中心框架下基于逻辑的交叉口信号与车辆轨迹协同控制方法。基于协同理论中的快慢变量主动伺服控制原理,设计一种交叉口信号配时慢变量与车辆轨迹策略快变量协同框架,并分别提出基于逻辑的信号配时优化和网联自动驾驶车辆轨迹协同控制方法。协同控制方法可以在车辆自主控制的条件下,一方面,实现交叉口信号配时动态适应交通需求;另一方面,实现网联自动驾驶车辆主动优化驾驶速度,高效通过交叉口。而且网联自动驾驶车辆在进口道可引导混合车队高效通过交叉口,降低绿灯启动损失,提高交叉口通行效率。仿真实验表明,本文的协同控制方法相较于传统控制方法可显著降低交叉口车辆平均延误,同时,基于逻辑的决策模型可实现快速求解。通过对网联自动驾驶车辆控制策略关键参数的敏感性分析,进一步讨论新型混合交通流交叉口通行公平性,并比较在不同网联自动驾驶车辆渗透率下的控制效果。  相似文献   

13.
为研究车联网环境下异质交通流的演变规律,首先,引入相对熵定量描述异质流的有序性,并分析有序性与智能网联车(connected and autonomous vehicle,CAV)市场渗透率、协同自适应巡航控制(cooperative adaptive cruise control,CACC)队列数之间的内在联系,推导得出智能网联车渗透率的增加及队列数的减少可以提升异质流的有序性;其次,提出了保守型集聚(conservative aggregation,CSA)、激进型集聚(radical aggregation,RDA)两种改进的智能网联车集聚换道策略,并通过元胞自动机仿真实验,从通行能力、相对熵和平均队列长度等方面比较了无集聚(no aggregation,NOA)、常规集聚(conventional aggregation,CVA)、CSA、RDA 4种换道策略的优劣;最后,在CSA换道策略中分析了不同最小队列规模限制对于通行能力的影响.研究结果表明:在双车道环境下,采取集聚换道策略能使智能网联车形成CACC队列,使异质流趋于“有序”,在20~95辆/km密度范围内提升通行能力;...  相似文献   

14.
为研究含人工车的混合交通流下部分智能网联车借道城市公交专用车道的控制问题,以 两个信号交叉口间公交专用车道为研究对象,提出以不妨碍公交车优先通行、满足换道动机和换 道安全条件的智能网联车借道公交车道控制策略。基于公交车道控制预测模块设计智能网联车 进入和离开公交专用道规则,采用改进最小化由换道引起的所有制动模型计算的收益作为智能 网联车换道时激励准则。期望跟随车类型若为人工车时,目标车辆礼让系数取1;妨碍公交优先 必须离开公交道时,满足安全规则即可。通过具体仿真实验予以验证,结果表明:本方法在高交 通需求下,与不允许借道控制方法、基于清空距离公交专用车道控制方法对比,人均延误分别减 少60%和40%,车均延误分别减少65%和32%,渗透率在30%~40%范围内控制效果显著。  相似文献   

15.
研究车路协同城市快速路与邻接交叉口主线分散换道和速度引导自适应控制方法. 对高饱和度入口匝道与邻接交叉口,提出主线分散换道自适应控制方法,依据合流区上游不同车道密度制定换道规则,以主线流量最大化为目标确定邻接交叉口相位相序;对出口匝道存在超长排队,提出主线速度引导自适应控制方法,依据主线上游车辆目的地确定速度引导策略,以出口匝道需求与通行能力相匹配为目标确定出口匝道关联相位优先权. 采用元胞自动机模型仿真验证,结果表明,所提方法与非协调控制、传统协调控制、车路协同交叉口自适应控制相比,区域流量分别提高17.38%、5.52%、10.06%,总时间消耗分别下降35.86%、 26.21%、17.39%.  相似文献   

16.
根据网联自动驾驶车辆接近合流区的全过程特征, 设定智慧高速合流车辆行驶的协调控制流程; 针对高速公路合流区冲突风险问题, 考虑车辆时间需求强度、车辆类型和行驶意图等因素, 提出了基于合作博弈理论的高速公路合流区网联自动驾驶车辆冲突解脱协调方法; 利用MATLAB软件对不同条件下的车辆通过合流区进行了仿真验证。仿真结果表明: 智慧高速合流区车辆行驶协调规则能够实现网联自动驾驶车辆的通过请求协调, 在合作博弈作用下能够进一步实现冲突系统虚拟支付成本最低的车辆调整决策; 合流区车辆系统虚拟风险程度随着速度的降低而降低; 当严格执行协调决策时, 网联自动驾驶车辆在合流区通过过程中具有更高的稳定性; 当潜在冲突点长度在一定范围内, 两网联自动驾驶车辆行驶速度相同时的合作博弈效果优于车辆行驶速度不同时的合作博弈效果; 利用该协调方法将冲突解脱过程的虚拟支付成本降低了9%~14%, 大大提高了网联自动驾驶车辆合流区通过过程的安全性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号