首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
战斗部舱内爆炸对舱室结构毁伤的实验研究   总被引:3,自引:0,他引:3  
为探讨舰船抗爆抗穿甲防护结构设计,利用导弹模拟战斗部进行了舱室内部爆炸模型试验,研究内爆条件下高速破片和爆炸冲击波对舱室结构的联合毁伤效应,分析舱内爆炸环境下舱室板架结构的典型破坏模式.结果表明:模拟战斗部内爆载荷作用下舱室结构的整体变形以冲击波破坏为主;战斗部破片对舱壁板架产生侵彻穿孔破坏,并在近爆区板架上形成了破口密集区域;单个破口对舱室整体结构破坏影响不大,而密集破口区在后续冲击波作用下会发生撕裂,形成大破口,影响舱室整体结构性能.该研究结果,可用于指导舰船防护结构的设计.  相似文献   

2.
舱内爆炸冲击载荷特性实验研究   总被引:10,自引:0,他引:10  
侯海量  朱锡  李伟  梅志远 《船舶力学》2010,14(8):901-907
为探讨舱室抗爆结构设计,采用典型舱室结构进行了舱内爆炸模型实验,研究了舱内爆炸下的冲击载荷及其作用过程,分析了舱内爆炸载荷的强度及舱内爆炸载荷作用下舱室板架结构的失效模式.结果表明:舱内爆炸载荷与敞开环境下的爆炸载荷有较大区别,由于舰艇结构的影响,舱内爆炸下,舱室板架结构承受的冲击载荷除壁面反射冲击波外,在舱室角隅部位还有强度远大于壁面反射冲击波的汇聚冲击波,以及这些冲击波的多次反复作用;舱内爆炸下舱室板架中部结构所承受的初始冲击载荷强度与敞开环境爆炸下壁面反射冲击载荷强度相当,而角隅部位舱内爆炸载荷的强度远大于敞开环境爆炸下壁面反射冲击载荷;舱内爆炸下舱室板架结构的主要失效模式是沿角隅部位发生撕裂失效并发生大挠度外翻变形.  相似文献   

3.
相对于敞开环境来说,发生在封闭舱室内的爆炸将对舰船结构造成更加严重的毁伤。论文对四边夹持约束的方形加筋板在舱内爆炸载荷作用下的动态响应进行了试验研究,分析加筋板结构的塑性大变形特征和舱室封闭程度对爆炸载荷作用效果的影响。试验结果表明:加筋板在舱内爆炸载荷作用下主要是发生整体塑性变形,中心变形挠度远远大于板厚值,中面膜力在板变形过程中起主要作用。与敞开环境爆炸载荷作用效果相比,舱内爆炸载荷作用在加筋板上的"等效损伤冲量"提高了6~8倍。结构变形主要取决于舱室壁面的反射冲击波和舱内准静态压力载荷。舱壁开孔降低了舱室壁面的封闭限制效果,导致舱内准静态压力载荷衰减速度加大,从而降低了爆炸载荷对结构的破坏能力。  相似文献   

4.
反舰导弹对水面舰艇最主要的攻击模式是它侵彻舷侧后在舱内爆炸。论文系统总结了在反舰导弹舱内爆炸作用下舰船舱室结构毁伤机理的研究进展,论述了两种最重要的舱内爆炸载荷—高速破片群和舱内爆炸压力,分析了船体材料本构关系和模型的发展历程,回顾了在爆炸载荷作用下舰船板/加筋板/舱室动态响应的规律和毁伤模式。最后提出了反舰导弹作用下舰船结构毁伤机理的研究建议。  相似文献   

5.
[目的]为了研究DDG 1000驱逐舰所采用新型舷侧泄爆结构中泄爆薄板厚度对泄爆效果的影响,[方法]首先,通过实验数据验证仿真方法的可靠性;然后,运用有限元分析软件建立泄爆舱室的仿真模型,分析薄板泄爆结构的泄爆原理,研究不同薄板厚度下舱室破坏及舱内载荷的变化情况;最后,通过函数拟合,得到比冲量和挠度随泄爆薄板厚度变化的二次函数模型。[结果]结果表明:舱室的破坏失效最先发生在薄板和舱壁的连接处,并逐渐向舱壁边角扩大,且薄板厚度越小,越容易形成泄爆口;泄爆口的形成表现为薄板整体飞出舱体;泄爆结构的存在对初始冲击波超压的影响不大,但能有效降低舱内的准静态压力和比冲量;造成防护舱壁变形的主要因素是前期的初始冲击波和反射冲击波,而造成防护舱壁最终破坏的主要因素是长时间作用的准静态压力。[结论]研究结果可为舰船舷侧舱室等结构开展泄爆设计提供一定的参考。  相似文献   

6.
为研究内爆载荷下的典型舱室结构毁伤效应,针对大型舰船的典型舱室结构,结合冲击波载荷的经验计算公式,采用一种简化算法对爆炸舱室板架整体损伤情况进行计算,并使用数值仿真方法进行验证。分析常规反舰导弹作用下的典型舱室结构毁伤模式。根据相关大尺度模型内爆试验结果,研究爆炸舱室板架失效模式,并用试验结果对简化算法再次验证。结果表明,该简化算法具备一定的可靠性和准确性。  相似文献   

7.
舱室内爆冲击波载荷特性及影响因素分析   总被引:1,自引:0,他引:1  
《舰船科学技术》2016,(3):43-48
战斗部爆炸产生的冲击波载荷是舰船舱室结构的主要载荷之一,舰船舱室内爆炸载荷准确与否是正确计算板架响应的关键。舰船舱室内爆冲击波在舱室内部多次反射,舰船舱室内部形成持续时间较长的准静态压力过程,在此过程中舱室板架承受多次冲击波反射载荷。本文采用实验验证数值程序计算舱室内爆炸冲击波的可靠性,在此基础上采用数值方法研究舱室内爆冲击波壁面反射特性及爆点位置对舱室内爆载荷的影响。计算结果表明舱室内爆各壁面反射冲击波明显,爆点位置仅对爆点附近区域冲击波特性有影响,对远离爆点区域的冲击波特性无明显影响。  相似文献   

8.
战斗部爆炸产生的冲击波载荷是舰船舱室结构的主要载荷之一,舰船舱室内爆炸载荷准确与否是正确计算板架响应的关键.舰船舱室内爆冲击波在舱室内部多次反射,舰船舱室内部形成持续时间较长的准静态压力过程,在此过程中舱室板架承受多次冲击波反射载荷.本文采用实验验证数值程序计算舱室内爆炸冲击波的可靠性,在此基础上采用数值方法研究舱室内爆冲击波壁面反射特性及爆点位置对舱室内爆载荷的影响.计算结果表明舱室内爆各壁面反射冲击波明显,爆点位置仅对爆点附近区域冲击波特性有影响,对远离爆点区域的冲击波特性无明显影响.  相似文献   

9.
李营  李延  刘海燕  王伟  方岱宁 《船舶力学》2021,25(7):927-934
舱内爆炸与自由场爆炸载荷特点明显不同,威力比同等当量下的自由场爆炸大得多.本研究制作了内爆炸载荷发生装置,开展了不同方板在舱内爆炸作用下的动态响应与损伤特性试验,对比了舱内爆炸载荷特点、板的塑性变形、板的损伤特点,讨论了无量纲数的适用性.研究表明:(1)舱内爆炸作用下角隅处的冲击波压力峰值明显大于其他区域,但各测点的冲量趋于一致;(2)炸药相对泄爆孔位置的不同,主要通过影响准静态压力改变方板的变形,初始冲击波的影响相对较小;(3)舱内爆炸作用下固支方板的破坏模式主要为Ⅰ类破坏和Ⅱ类破坏,即整体大塑性变形破坏和边缘拉伸失效.  相似文献   

10.
[目的]炸药在自由场、舱室内爆炸时,载荷特征存在很大差别。[方法]模拟不同药量炸药在自由场、密闭舱室与开口舱室中爆炸的过程,并对比数值计算载荷与亨利奇公式计算结果,分析炸药在密闭舱室以及开口舱室内的载荷特征。[结果]研究表明,在密闭舱室中,冲击波在角隅处形成汇聚压力,其在角隅处的冲击波总冲量约为板架中心处冲击波总冲量的1.45倍,而开口舱室角隅处的压力并不明显;与密闭舱室相比,开口舱室的反射压力峰值与准静态压力值均较小;开口舱室的冲击波总冲量约为密闭舱室的20%;密闭舱室板架的失效模式为板架沿加强筋发生塑性变形,沿角隅发生撕裂;开口舱室角隅处并未发生撕裂,但开口边缘处发生了外翻变形;只考虑冲击波作用时,采用数值模拟方法得到的板架中心最大变形值与简化计算方法得到的值比较接近,但在同时考虑冲击波、准静态压力作用时,误差较大。[结论]研究结果可为舱室内爆载荷的特征与板架毁伤规律提供较为合理的预报。  相似文献   

11.
舰船结构在受到高强度爆炸载荷作用时的破坏形式主要是板架的塑性大变形和撕裂。对四边约束矩形板在爆炸冲击波载荷下的塑性大变形响应进行了理论分析和试验研究。基于板的大挠度变形理论和能量守恒原理,建立了矩形板在爆炸载荷作用下发生塑性大变形的弹塑性分析方法。将理论计算与试验及数值计算进行对比,表明弹塑性分析方法有较好的计算精度和适用性。可用于计算舰船局部结构对舱内爆炸冲击波的响应,为舰船的抗爆设计提供理论依据。  相似文献   

12.
为研究空中爆炸载荷对舰船结构的毁伤效果,利用Ansys对典型军辅船进行完整建模,在考虑船体周围水流场的前提下,基于LS-DYNA中的ALE算法模拟了典型舰船结构在空中爆炸作用下的响应并将之同实船实验数据进行对比分析,验证了其有效性。通过分析不同工况下典型位置的冲击响应数据及舰船结构毁伤效果云图,得出如下结论:空爆对舰船的毁伤具有明显的局部效应;强构件交界处及舱室角隅处因空爆反射波而产生应力集中,从而成为空爆中的薄弱环节;空中接触爆炸对舰船结构的毁伤效果以形成局部破口为主要形式;穿舱爆炸破坏模式受舱室容积的影响较大,距离爆源相同距离处的响应峰值有很大的不同,各层板架具有明显的滤波吸能效果。文中的计算方法及结论将为舰船抗空爆毁伤相关方面的研究提供参考。  相似文献   

13.
[目的]为研究典型舱内爆炸载荷对加筋板的毁伤特性,将舱内爆炸载荷分为初始爆炸冲击波载荷和准静态气压载荷,利用有限元分析软件LS-DYNA开展爆炸载荷下固支单向加筋板毁伤特性的数值模拟。[方法]主要模拟载荷冲量相等和载荷峰值相等时固支单向加筋板的变形特性,以及加筋板分别在初始爆炸冲击波载荷、准静态气压载荷及2种载荷联合作用下的毁伤特性,并分析上述载荷作用下加筋板的变形特点。[结果]结果表明:当作用在加筋板上的冲量相等、载荷作用时间小于0.05倍垂向一阶自振周期时,加筋板的最终挠度值处于最大值附近;当载荷峰值相同时,存在饱和冲量值,达到饱和冲量值以后,载荷作用时间不再影响加筋板的最终变形。[结论]在舱内爆炸载荷作用下,加筋板的最终变形不是2种载荷作用下的简单叠加,2种载荷的联合作用会增强毁伤效果。  相似文献   

14.
开展夹层板单元防护性能研究可为舰船防护结构设计提供指导。以某船底加筋板架为应用对象,设计出U型折叠式夹层板结构;利用MSC.Dytran对船底板架及夹层板结构在水下爆炸冲击载荷下的动态响应进行数值仿真分析,通过分析流-固耦合压力、损伤变形、速度、加速度、结构塑性吸能等性能参数,对比研究两结构的防护性能;分析夹层板在不同冲击强度下的损伤特性,面板厚度、夹芯板厚、夹芯与面板夹角、夹芯单元宽度、夹芯高度等结构参数对夹层板损伤变形、结构吸能等特性的影响。通过研究得到了U型夹层板在水下爆炸冲击载荷下的损伤特性、变形模式等,U型夹层板的防护性能明显优于传统加筋板架,夹芯层在夹层板抵抗水下冲击载荷中起到关键作用,结构参数对防护性能产生不同程度的影响。  相似文献   

15.
以典型舰船舱室为研究对象,分别建立对应2种打击模式下的多舱室结构模型。采用有限元分析软件,模拟多个舱室结构在内部爆炸冲击载荷作用下的变形和破坏过程,对炸药在舱内爆炸的毁伤特点以及舱室结构的破坏机理进行分析。分析结果表明,舱室结构破坏受炸药装药量、舱壁厚度、初始破口等因素影响,且初始破口对最终破坏效果的影响随着装药量的增加而降低。在对内部遭受较大装药量打击的舰船进行结构毁伤评估时,对于中心处起爆的情况,在进行多舱室建模时,可近似忽略导弹破口的影响,从而方便建模和计算过程。  相似文献   

16.
加筋板架广泛应用于船体结构,其优良性能可以为舰船结构的防护及优化设计提供技术支持。本文针对近场水下爆炸冲击荷载作用下加筋结构的动力学响应,基于ALE方法采用LS-DYNA软件对三种加筋形式结构进行了数值模拟,分析了板架的变形响应。结果表明:加强筋的设置方式对板架的变形有一定的影响,当三种类型加筋结构的总质量相同时,井字形加强筋的效果较好;对于矩形截面加强筋,结构动力学性能受高宽比影响较明显,在舰船结构设计中应根据实际情况合理选择。此外,还针对不同爆距作用下加筋板的毁伤特性进行了研究,得到了两种不同的毁伤模式。  相似文献   

17.
为了评估舰船结构在水下多次爆炸冲击下抗爆抗冲击性能,采用Abaqus非线性有限元软件建立了固支背空钢板结构水下爆炸冲击数值模型,数值计算结果与文献实验结果吻合较好,验证了水下爆炸声-固耦合方法的可靠性。在此基础上,提出了多次水下爆炸冲击声-固耦合数值模拟方法,研究了多次水下爆炸冲击下典型背空加筋板损伤累积特性与损伤模式演化规律,分析了冲击因子对结构损伤特性的影响。结果表明,多次水下爆炸冲击作用下背空加筋板动态变形与损伤逐渐累积,可能发生塑性大变形、边界拉伸撕裂以及整体失效破坏等损伤模式演化。当冲击因子小于某一阈值时,背空加筋板多次水下爆炸冲击下塑性变形趋于稳定,出现伪安定现象。研究结果可为舰船结构抗爆抗冲击设计提供参考。  相似文献   

18.
[目的]为研究加筋板结构在爆炸冲击波载荷作用下的变形吸能特性,[方法]利用有限元分析软件LS-DYNA模拟计算爆炸冲击波对固支加筋板毁伤作用下的变形吸能过程。以单向加筋板为研究对象,分析其变形吸能特性,得到加筋板的整体挠度和板格局部挠度,并利用两者比值来说明板格局部吸能与加筋板整体吸能的比例关系。[结果]结果表明,在爆炸冲击载荷一定的条件下,加筋板的整体变形随着相对刚度的增大而减小;板格局部挠度比值随着加筋板相对刚度的增大而增大;加筋板局部吸能与整体变形吸能的比例也随着其相对刚度的增大而增大。[结论]所提的无量纲相对刚度与挠度比的关系可为舰船抗爆及泄爆结构设计提供参考和思路。  相似文献   

19.
[目的]为了研究箱型梁典型节点结构在舱内爆炸下的结构强度,[方法]基于ANSYS/LS-DYNA显式动力有限元软件,首先建立箱型梁船体舱段结构的有限元模型。然后,采用ALE算法开展舱内爆炸载荷下舷侧箱型梁与强横梁连接处不同型式节点结构的动态响应数值计算。最后,在给定的炸药当量和爆点位置情况下,获得舱室结构的整体变形和破坏模式,并分析在不同节点结构设计方案下典型位置的应力特征。[结果]计算结果表明:舷侧箱型梁与强横梁连接处圆弧式和肘板式节点结构的应力峰值与甲板破口尺寸基本相当;从舱壁撕裂长度来看,肘板式稍逊于圆弧式,在中间箱型梁与强横梁连接处,圆弧连接最优,单侧肘板次之,双侧肘板最差。[结论]所得到的数值计算结果可为箱型梁节点连接结构的工程应用提供有益的参考。  相似文献   

20.
[目的]对于受到爆炸脉冲载荷冲击作用的船体结构,基于饱和冲量现象的相关研究表明,仅根据最大载荷幅值和脉冲总冲量来设计船体结构是不合理的,需探究工程应用中的饱和冲量现象。[方法]首先,总结饱和冲量概念的提出及研究发展;然后,以舱室内爆炸为典型算例,分析内爆炸载荷的曲线特性及结构响应特征;最后,基于饱和等效方法将复杂的内爆炸载荷等效为矩形脉冲载荷,采用理论及数值方法对等效载荷进行计算。[结果]结果表明:在舱室内爆炸准静态超压情况下普遍存在饱和冲量现象,实际工程应用中爆炸载荷会对结构造成较大的塑性变形,通常超过10倍板厚;而运用基于饱和冲量的等效方法分析,所得结果与数值仿真结果的误差小于10%。[结论]运用此方法可更准确地得出结构塑性动力响应结果,在结构抗冲击设计优化时,还可减少繁琐的复杂非线性数值计算,使设计更高效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号