首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ambient concentrations of pollutants are correlated with emissions, but the contribution to ambient air quality of on-road mobile sources is not necessarily equal to their contribution to regional emissions. This is true for several reasons such as the distribution of other pollution sources and regional topology, as well as meteorology. In this paper, using a dataset from a travel demand model for the Sacramento metropolitan area for 2005, regional vehicle emissions are disaggregated into hourly, gridded emission inventories, and transportation-related concentrations are estimated using an atmospheric dispersion model. Contributions of on-road motor vehicles to urban air pollution are then identified at a regional scale. The contributions to ambient concentrations are slightly higher than emission fractions that transportation accounts for in the region, reflecting that relative to other major pollution sources, mobile sources tend to have a close proximity to air quality monitors in urban areas. The contribution results indicate that the impact of mobile sources on PM10 is not negligible, and mobile sources have a significant influence on both NOx and VOC pollution that subsequently results in secondary particulate matter and ozone formation.  相似文献   

2.
Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using ‘passive’ data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper, a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter less than 10 μm aerodynamic diameter (PM10), 1,3-butadiene (C4H6) and benzene (C6H6) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions measured simultaneously with on-line air quality monitoring equipment.  相似文献   

3.
This paper describes the development of an integrated approach for assessing ambient air quality and population exposure as a result of road passenger transportation in large urban areas. A microsimulation activity-based travel demand model for the Greater Toronto Area – the Travel Activity Scheduler for Household Agents – is extended with capabilities for modelling and mapping of traffic emissions and atmospheric dispersion. Hourly link-based emissions and zone-based soak emissions were estimated. In addition, hourly roadway emissions were dispersed at a high spatial resolution and the resulting ambient air concentrations were linked with individual time-activity patterns derived from the model to assess person-level daily exposure. The method results in an explicit representation of the temporal and spatial variation in emissions, ambient air quality, and population exposure.  相似文献   

4.
The aim of this research is the implementation of a GPS-based modelling approach for improving the characterization of vehicle speed spatial variation within urban areas, and a comparison of the resulting emissions with a widely used approach to emission inventory compiling. The ultimate goal of this study is to evaluate and understand the importance of activity data for improving the road transport emission inventory in urban areas. For this purpose, three numerical tools, namely, (i) the microsimulation traffic model (VISSIM); (ii) the mesoscopic emissions model (TREM); and (iii) the air quality model (URBAIR), were linked and applied to a medium-sized European city (Aveiro, Portugal). As an alternative, traffic emissions based on a widely used approach are calculated by assuming a vehicle speed value according to driving mode. The detailed GPS-based modelling approach results in lower total road traffic emissions for the urban area (7.9, 5.4, 4.6 and 3.2% of the total PM10, NOx, CO and VOC daily emissions, respectively). Moreover, an important variation of emissions was observed for all pollutants when analysing the magnitude of the 5th and 95th percentile emission values for the entire urban area, ranging from −15 to 49% for CO, −14 to 31% for VOC, −19 to 46% for NOx and −22 to 52% for PM10. The proposed GPS-based approach reveals the benefits of addressing the spatial and temporal variability of the vehicle speed within urban areas in comparison with vehicle speed data aggregated by a driving mode, demonstrating its usefulness in quantifying and reducing the uncertainty of road transport inventories.  相似文献   

5.
Highway emissions represent a major source of many pollutants. Use of local data to model these emissions can have a large impact on the magnitude and distribution of emissions predicted and can significantly improve the accuracy of local scale air quality modeling assessments. This paper provides a comparison of top–down and bottom–up approaches for developing emission inventories for modeling in one urban area, Philadelphia, in calendar year 1999. A bottom–up approach relies on combining motor vehicle emission factors and vehicle activity data from a travel demand model estimated at the road link level to generate hourly emissions data. This approach can result in better estimates of levels and spatial distribution of on-road motor vehicle emissions than a top–down approach that relies on more aggregated information and default modeling inputs.  相似文献   

6.
Based on the national emission inventory data from different countries, heavy-duty trucks are the highest on-road PM2.5 emitters and their representation is estimated disproportionately using current modeling methods. This study expands current understanding of the impact of heavy-duty truck movement on the overall PM2.5 pollution in urban areas through an integrated data-driven modeling methodology that could more closely represent the truck transportation activities. A detailed integrated modeling methodology is presented in the paper to estimate urban truck related PM2.5 pollution by using a robust spatial regression-based truck activity model, the mobile source emission and Gaussian dispersion models. In this research, finely resolved spatial–temporal emissions were calculated using bottom-up approach, where hourly truck activity and detailed truck-class specific emissions rates are used as inputs. To validate the proposed methodology, the Cincinnati urban area was selected as a case study site and the proposed truck model was used with U.S. EPA’s MOVES and AERMOD models. The heavy-duty truck released PM2.5 pollution is estimated using observed concentrations at the urban air quality monitoring stations. The monthly air quality trend estimated using our methodology matches very well with the observed trend at two different continuous monitoring stations with Spearman’s rank correlation coefficient of 0.885. Based on emission model results, it is found that 71 percent of the urban mobile-source PM2.5 emissions are caused by trucks and also 21 percent of the urban overall ambient PM2.5 concentrations can be attributed to trucks in Cincinnati urban area.  相似文献   

7.
Nowadays, the massive car-hailing data has become a popular source for analyzing traffic operation and road congestion status, which unfortunately has seldom been extended to capture detailed on-road traffic emissions. This study aims to investigate the relationship between road traffic emissions and the related built environment factors, as well as land uses. The Computer Program to Calculate Emissions from Road Transport (COPERT) model from European Environment Agency (EEA) was introduced to estimate the 24-h NOx emission pattern of road segments with the parameters extracted from Didi massive trajectory data. Then, the temporal Fuzzy C-Means (FCM) Clustering was used to classify road segments based on the 24-h emission rates, while Geographical Detector and MORAN’s I were introduced to verify the impact of built environment on line source emissions and the similarity of emissions generated from the nearby road segments. As a result, the spatial autoregressive moving average (SARMA) regression model was incorporated to assess the impact of selected built environment factors on the road segment emission rate based on the probabilistic results from FCM. It was found that short road length, being close to city center, high density of bus stations, more ramps nearby and high proportion of residential or commercial land would substantially increase the emission rate. Finally, the 24-h atmospheric NO2 concentrations were obtained from the environmental monitor stations, to calculate the time variational trend by comparing with the line source traffic emissions, which to some extent explains the contribution of on-road traffic to the overall atmospheric pollution. Result of this study could guide urban planning, so as to avoid transportation related built environment attributes which may contribute to serious atmospheric environment pollutions.  相似文献   

8.
The road transport sector is one of the major contributors of greenhouse gases and other air pollutants emissions. Regional emissions levels from road vehicles were investigated, in Mauritius, by applying a fuel-based approach. We estimated fuel consumption and air emissions based on traffic counts on the various types of classified roads at three different regional set ups, namely urban, semi urban and rural. The Relative Development Index (RDI), a composite index calculated from socio-economic and environmental indicators was used to classify regions. Our results show that the urban motorways were the most polluting due to heavy traffic. Some rural areas had important pollution levels as well. Our analysis of variance (ANOVA), however, showed little difference in emissions among road types and regions. The study can provide a simple tool for researchers in countries where data are very scarce, as is the case for many developing countries.  相似文献   

9.
Suburban sprawl, population growth, and automobile dependency contribute directly to air pollution problems in US metropolitan areas. As metropolitan regions attempt to mitigate these problems, they are faced with the difficult task of balancing the mobility needs of a growing population and economy, while simultaneously lowering or maintaining levels of ambient pollutants. Although ambient air quality can be directly monitored, predicting the amount and fraction of the mobile source components presents special challenges. A modeling framework that can correlate spatial and temporal emission-specific vehicle activities is required for the complex photochemical models used to predict pollutant concentrations. This paper discusses the GIS-based modeling approach called the Mobile Emission Assessment System for Urban and Regional Evaluation (MEASURE). MEASURE provides researchers and planners with a means of assessing motor vehicle emission reduction strategies. Estimates of spatially resolved fleet composition and activity are combined with activity-specific emission rates to predict engine start and running exhaust emissions. Engine start emissions are estimated using aggregate zonal information. Running exhaust emissions are predicted using road segment specific information and aggregate zonal information. The paper discusses the benefits and challenges related to mobile source emissions modeling in a GIS framework and identifies future GIS mobile emissions modeling research needs.  相似文献   

10.
This paper presents a methodology of assigning traffic in a network with the consideration of air quality. Traffic assignment is formulated as an optimization problem considering travel cost and on-road emissions. It introduces a cell-based approach to model emission concentrations so that either the average or maximum emissions in a network can be considered in the optimization process. The emissions in a cell are modeled taking into consideration the influence of the emission sources from all cells in the network. A case study demonstrates that minimizing travel cost and reducing air pollutants may not be always achieved simultaneously. The traffic assignment procedure can effectively reduce emission concentrations at those locations with the worst air quality conditions, with only a marginal increase in travel time and average emission concentration in the network.  相似文献   

11.
Urban travel time information is of great importance for many levels of traffic management and operation. This paper develops a tensor-based Bayesian probabilistic model for citywide and personalized travel time estimation, using the large-scale and sparse GPS trajectories generated by taxicabs. Combined with the knowledge learned from historical trajectories, travel times of different drivers on all road segments in some time slots are modeled with a 3-order tensor. This tensor-based modeling approach incorporates both the spatial correlation between different road segments and the person-specific variation between different drivers, as well as the coarse-grain temporal correlation between recent and historical traffic conditions and the fine-grain temporal correlation between different time slots. To account for the variability caused by the intrinsic uncertainties in urban road network, each travel time entry in the built tensor is treated as a variable following a log-normal distribution. With the help of the fully Bayesian treatment, the model achieves automatic hyper-parameter tuning and model complexity controlling, and therefore the problem of over-fitting is prevented even when the used data is large-scale and sparse. The proposed model is applied to a real case study on the citywide road network of Beijing, China, using the large-scale and sparse GPS trajectories collected from over 32,670 taxicabs for a period of two months. Empirical results of extensive experiments demonstrate that the proposed model provides an effective and robust approach for urban travel time estimation and outperforms the considered competing methods.  相似文献   

12.
Short‐term traffic flow prediction in urban area remains a difficult yet important problem in intelligent transportation systems. Current spatio‐temporal‐based urban traffic flow prediction techniques trend aims to discover the relationship between adjacent upstream and downstream road segments using specific models, while in this paper, we advocate to exploit the spatial and temporal information from all available road segments in a partial road network. However, the available traffic states can be high dimensional for high‐density road networks. Therefore, we propose a spatio‐temporal variable selection‐based support vector regression (VS‐SVR) model fed with the high‐dimensional traffic data collected from all available road segments. Our prediction model can be presented as a two‐stage framework. In the first stage, we employ the multivariate adaptive regression splines model to select a set of predictors most related to the target one from the high‐dimensional spatio‐temporal variables, and different weights are assigned to the selected predictors. In the second stage, the kernel learning method, support vector regression, is trained on the weighted variables. The experimental results on the real‐world traffic volume collected from a sub‐area of Shanghai, China, demonstrate that the proposed spatio‐temporal VS‐SVR model outperforms the state‐of‐the‐art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers the effects of different strategies that might be considered to reduce the impact made by road traffic on air pollution in London. The management of road traffic in large urban areas is one of many options being considered to reduce pollutant emissions to meet statutory air pollution objectives. Increasingly, the concept of a low emission zone (LEZ) is being proposed as a means of achieving this reduction. An assessment has been made of different LEZ scenarios in central London, which involve reducing traffic flow or modifying the vehicle technology mix. Methods of predicting annual mean nitrogen dioxide concentrations utilising comprehensive traffic data and air pollution measurements have been used to develop empirical prediction models. Comparisons with statutory air pollution objectives show that significant action will be required to appreciably decrease concentrations of nitrogen dioxide close to roads. The non-linear atmospheric chemistry leading to the formation of nitrogen dioxide, results in a complex relationship between vehicle emissions and ambient concentrations of the pollutant. We show that even ambitious LEZ scenarios in central London produce concentrations of nitrogen oxides that are achieved through a “do nothing” scenario only five years later.  相似文献   

14.
In many countries passenger transport is significantly subsidized in a variety of ways for various reasons. The objective of this paper is to examine efficiency, distributional, environmental (CO2 emissions) and spatial effects of increasing different kinds of passenger transport subsidies discriminating between household types, travel purposes and travel modes. The effects are calculated by applying a numerical spatial general equilibrium approach calibrated to an average German metropolitan area. In extension to most studies focusing on only one kind of subsidy, we compare the effects of different transport subsidies within the same unified framework that allows to account for two features not yet considered simultaneously in studies on transport subsidies: endogenous labor supply and location decisions. Furthermore, congestion, travel mode choice, travel related CO2 emissions and institutional details regarding the tax system in Germany are taken into account. The results suggest that optimal subsidy levels are either small or even zero. While subsidizing public transport is welfare enhancing, subsidies to urban road traffic reduce aggregate urban welfare. Concerning the latter it is shown that making investments in urban road infrastructure capacity or reducing gasoline taxes may even be harmful to residents using predominantly automobile. In contrast, pure commuting subsidies hardly affect aggregate urban welfare, but distributional effects are substantial. All policies cause suburbanization of city residents and (except for subsidizing public transport) contribute to urban sprawl by raising the spatial imbalance of residences and jobs but the effect is relatively small. In addition, the policies induce a very differentiated pattern regarding distributional effects, benefits of landowners and environmental effects.  相似文献   

15.
A detailed investigation was conducted to study the sources of particulate matter in the vicinity of an urban road in Žilina. To determine the amount of particulate matter (PM10, PM2.5 and PM1) present in the ambient air, a reference gravimetric method was used. The main objective of this contribution was to identify the sources of these particles by means of statistical methods, specifically principal component analysis (PCA), factor analysis (FA), and absolute principal component scores (APCS), as well as using the presence of 17 metals in the particulate matter (Na, Mg, Al, Ca, V, Cr, Fe, Mn, Ni, Cu, Zn, As, Mo, Sb, Cd, Ba, Pb). To identify the metals in the particulate matter samples and to determine their abundances, spectroscopic methods were used, specifically inductively coupled plasma mass spectrometry (ICP-MS). Each of these metals may come from a specific source, such as the burning of fossil fuels in fossil fuel power plants; local heating of households; the burning of liquefied fossil fuels in the combustion engines of vehicles; the burning of coal and wood; non-combustion related emissions resulting from vehicular traffic; resuspension of traffic-related dust; and industry. Diesel vehicles and non-combustion emissions from road traffic have been identified as two key sources of the particulate matter. The results reveal that non-combustion emissions, which are associated with the elements Na, Fe, Mn, Ni, Zn, Mo, Sb, Cd, and Pb, are the major contributors, followed by combustion emissions from diesel vehicles, which are associated with the elements Mg, Ca, and Ba.  相似文献   

16.
To better assess health impacts from diesel transportation sources, particle number emissions can be modeled on a road network using traffic operating parameters. In this work, real-time particle number emissions rates from two diesel transit buses were aggregated to the roadway link-level and modeled using engine parameters and then vehicle parameters. Modern statistical methods were used to identify appropriate predictor variables in the presence of multicollinearity, and controlled for correlated emission measurements made on the same day and testing route. Factor analysis helped to reduce the number of potential engine parameters to engine load, engine speed, and exhaust temperature. These parameters were incorporated in a linear mixed model that was shown to explain the variation attributable to link-characteristics. Vehicle specific power and speed were identified as two surrogate vehicle travel variables that can be used in the absence of engine parameters, although with a loss in predictive power compared to the engine parameter model. If vehicle speed is the only operating input available, including road grades in the model can significantly improve particle number emission estimates even for links with mild grade. Although the data used are specific to the buses tested, the approach can be applied to modeling emissions from other vehicle models with different engine types, exhaust systems, and engine retrofit technologies.  相似文献   

17.
Carbon monoxide is a major contributor to air pollution in urban cities, particularly at the roadside. Hourly, monthly and seasonal mean carbon monoxide concentration data are collected from a roadside air monitoring station in Hong Kong over 7-years. The station is a few metres from a major intersection surrounded by tall buildings. In particular, hourly patterns of concentrations on different days of the week are investigated. The data show that hourly carbon monoxide concentrations resemble the traffic pattern of the area and tend to be lower in the summer. Using a seasonal autoregressive integrated moving average models shows that the daily traffic cycle strongly influences concentrations. Further, it is found that urban roadside carbon monoxide monitoring data exhibits a long-memory process, suggesting that a model incorporating long memory and seasonality effects is needed simulate urban roadside air quality.  相似文献   

18.
Widespread adoption of plug-in electric vehicles (PEVs) may substantially reduce emissions of greenhouse gases while improving regional air quality and increasing energy security. However, outcomes depend heavily on the electricity generation process, power plant locations, and vehicle use decisions. This paper provides a clear methodology for predicting PEV emissions impacts by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts of vehicle production and use and Texans’ exposure to emissions are also computed and monetized. This study reveals to what extent PEVs are more environmentally friendly, for most pollutant species, than conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision and other manufacturing processes. Results indicate that PEVs on today’s grid can reduce GHGs, NOx, PM10, and CO in urban areas, but generate significantly higher emissions of SO2 than existing light-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy security benefits of electrified vehicle-miles endure. As conventional vehicle emissions rates improve, it appears that power grids must follow suit (by improving emissions technologies and/or shifting toward cleaner generation sources) to compete on an emissions-monetized basis with conventional vehicles in many locations. Moreover, while PEV pollution impacts may shift to more remote (power plant) locations, dense urban populations remain most strongly affected by local power plant emissions in many Texas locations.  相似文献   

19.
The effectiveness of control measures to reduce road dust emissions is analyzed using a year’s data of road dust emissions collected with a mobile sampling platform and a survey of road maintenance practices in the Lake Tahoe Basin of Nevada and California US. Attributes such as sweeping practices, anti-icing, shoulder improvement, pavement condition, trackout, and abrasive material from road segments were analyzed with a feature subset selection algorithm. Street sweeping was found to be an effective means of controlling dust emissions from roads. Road dust from dirty tertiary roads served as a continuous source of suspendable material for adjacent high-speed roads in the winter time. To be most effective, emission control strategies require that not only primary roads, but all roads be swept after snow storms to recover applied abrasive material.  相似文献   

20.
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21%, 33%, 24% and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than non-commercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号