首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mobile manipulators operating in field environments will be required to apply large forces, or manipulate large loads, and to perform such tasks on uneven terrain which may cause the system to approach, or reach, a dangerous tipover instability. To avoid tipover in an automatic system, or to provide a human operator with an indication of proximity to tipover, it is necessary to define a measure of available stability margin. This work presents a new tipover stability measure (the Force-Angle stability measure) which has a simple geometric interpretation, is easily computed, and is sensitive to changes in Center of Mass height. The proposed metric is applicable to systems subject to inertial and external forces, operating over even or uneven terrains. Requirements for computation and implementation of the measure are described, and several different categories of application of the measure are presented along with useful normalizations. Performance of the Force-Angle measure is demonstrated and compared with that of other stability margin measures using a forestry vehicle simulation. Results show the importance of considering both center-of-mass height and system heaviness, and confirm the effectiveness of the Force-Angle measure in monitoring the tipover stability margin.  相似文献   

2.
ABSTRACT

We put forward three actuator placements of the high-speed train power bogie to improve the train hunting stability. The active control forces act on the frame, between the frame and the motor, and on the motor by the inertial or retractable actuator, respectively, based on the feedback states of vibration velocity of the front and rear end beams. The feedback gains and the motor suspension parameters in different cases are optimised with the two objectives of system stability margin and control effort. The required actuator outputs of the three cases are compared based on the theoretical analysis with a 8 DOF bogie model. The results show that the three control cases can effectively improve the hunting stability, especially at high speed. The active control of motor lateral movement is helpful to increase the dynamic vibration absorbing function of the motor flexible suspension, and the control output is obviously smaller than the other two control cases. In addition, the influence of system delay on stability was analysed and we could use or avoid the effects of delay on the stability.  相似文献   

3.
独立悬架汽车转向系统刚度测量   总被引:6,自引:0,他引:6  
赵剑  管迪华 《汽车工程》2001,23(5):337-339
汽车转向系统刚度是影响汽车操纵稳定性的重要因素之一,本文介绍了一种实用的测量独立悬架汽车转向系统刚度的试验方法,分析了汽车转向系统的受力状况,推导了转向系统中各环节刚度的计算公式,对一辆实车进行的试验测量得到了可靠的数据结果,对进一步探讨转向系统刚度对汽车操纵稳定性的影响具有重要的意义。  相似文献   

4.
Vehicles which travel on uneven roadways or rough surfaces require power beyond that associated with air drag, rolling resistance or other sources of friction even though kinetic and potential energy may be conserved on the average. This is true because damped relative motions within the vehicle dissipate energy, and, even for nearly rigid vehicles, energy is lost at impact with the ground whenever the vehicle loses contact with the ground surface due to the finite downward acceleration of gravity.

Using elementary vehicle models, the nature and magnitude of the component of propulsive force associated with these energy loss mechanisms is estimated. In certain speed ranges, this force is found to vary dramatically with speed for several types of periodic roadway profiles studied. While the force due to unevennesss may be small compared to other forces for high-speed vehicles operating on smooth surfaces, it can be the major source of required power for off-road vehicles operating on very rough terrain.  相似文献   

5.
The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre–road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.  相似文献   

6.
It needs some seconds for a signal, which is created from brake application, to travel from the first part of the train system (locomotive) to the end part of it (last wagon). Delay in time of all parts of the system (train) brake is seen which might deteriorate the longitudinal dynamic interaction of the long trains. For instance, this results in running of the rear cars to the front ones and hence producing large in-train forces at the buffers and couplers. Major parts of the rolling stock in railway system repair are known for relative compression and tension forces, which are applied to the whole train system and cause huge expenses for the industry. For trains with long lengths, operating in safe area is another important relation with train forces along the system. By using MATLAB simulation in this study, we investigated the length's effect on train dynamic along the system mainly for freight trains. We did our research on the trains which are currently used in Railways of Islamic Republic of Iran, RIRI. Four diverse cases were under our simulation, in each of which, trains consist of 52, 32, 20 and 12 cars, respectively. Two different forces (tension and compression) are displayed here as of the outcome of the research. Simulations show different forms of interplays in dynamics along the system. Then we compared the graphs to each other to find out detailed influences of length of the whole system (train including different number of wagons and locomotive) on dynamics of system along it while braking is applied.  相似文献   

7.
曲轴疲劳试验机自动控制系统的研制   总被引:1,自引:0,他引:1  
为考核曲轴的弯曲疲劳强度 ,研制了一套由可编程控制器 (PIC)和PC机组成的高效、高自动化的试验装置 ,该装置可模拟曲轴在实际工况下的受力情况 ,测量所受应力的大小和分布等参数。实际应用证明 ,该装置具有较高的可靠性和自动化水平  相似文献   

8.
This paper describes the examination of the vehicle dynamics and stability of four-wheeled forklift trucks (FLTs) in cornering situations. Cornering at excessive speed is one major reason for fatal accidents with forklifts caused by lateral tipover. In order to increase the lateral stability of this kind of working machinery, the influence of certain important design properties has been studied using an appropriate vehicle simulation model and a driving simulator. The simulation model is based on a multi-body system approach and includes submodels for the propulsion system and the tyres. The driving behaviour of the operator has not been modelled. Instead, a driving simulator has been built up and a real human driver was employed for ensuring adequate and realistic model input. As there have not been any suitable standardised test manoeuvres available for FLTs, a new driving test has been developed to assess the lateral stability. This test resembles the well-known J turn/Fishhook turn, but includes a more dynamic counter-steering action. Furthermore, the dimensions of the test track are defined. Therefore, the test is better adapted to the driving dynamics of forklifts and reflects the real driver behaviour more closely. Finally, a parametrical study has been performed, examining the influence of certain important technical properties of the truck such as the maximum speed, the position of centre of gravity, rear axle design features and tyre properties. The results of this study may lead to a better understanding of the vehicle dynamics of forklifts and facilitate goal-oriented design improvements.  相似文献   

9.
SUMMARY

Vehicles which travel on uneven roadways or rough surfaces require power beyond that associated with air drag, rolling resistance or other sources of friction even though kinetic and potential energy may be conserved on the average. This is true because damped relative motions within the vehicle dissipate energy, and, even for nearly rigid vehicles, energy is lost at impact with the ground whenever the vehicle loses contact with the ground surface due to the finite downward acceleration of gravity.

Using elementary vehicle models, the nature and magnitude of the component of propulsive force associated with these energy loss mechanisms is estimated. In certain speed ranges, this force is found to vary dramatically with speed for several types of periodic roadway profiles studied. While the force due to unevennesss may be small compared to other forces for high-speed vehicles operating on smooth surfaces, it can be the major source of required power for off-road vehicles operating on very rough terrain.  相似文献   

10.
ABSTRACT

Rail vehicles negotiating curves or in crosswinds are subjected to high lateral forces which provoke high displacements of the lateral suspension. As these displacements need to be limited due to gauging restrictions these forces cause the lateral suspension to reach the bumpstops and consequently the passenger comfort is significantly jeopardized. The paper presents the design of a pneumatic system that allows limiting the lateral displacement during curve negotiation (hold-off device). It describes the different phases of the design process starting from the definition of requirements to be fulfilled. The main components and the effect of their characteristics on the overall performance of the centring system are studied, and completed with an experimental analysis of the centring system. Finally, the described methodology is applied to a typical high speed rail vehicle. The results prove that the concept of a centring system which uses the same technology and components that are used in rail vehicles for the pneumatic height control system of secondary suspensions is possible. This fact is particularly interesting as the market offers this kind of components and has proven their reliability during many hours of service therefore the new hold-off system will be based on in-service validated components.  相似文献   

11.
Train-tram railway vehicles implement the connection between urban tramlines and the surrounding railway network. Train-tram railway vehicles, which use existing infrastructure, can help to avoid large investments in new railways or tramlines and make interchanges between city center and surrounding cities unnecessary. However, present train-tram rail vehicle cannot carry out the integration of operating by means of high speed in intercity railways with operating on small radius of curvature in inner city tramlines. This paper aims to develop a new model for solid wheelsets train-tram railway vehicles, which will not only pass the curve of 25mR radius of curvature traveling on inner city tramlines with the speed of 18 km/h, but also can travel on straight railway with 200 km/h high speed between intercity. In this paper, a new train-tram model, including five car-body and five motor bogies with ten traction motors, is addressed. Expect as a real rail vehicle testing, this study prefer virtual simulation, which is an effective way to show the rail vehicle performance, such as ride stability, ride comfort and ride safety, by means of evaluating the dynamic characteristics of rail vehicle. Moreover, Design of Experiment (DOE) method is used to optimize solid wheelsets bogie system on improving passenger comfort, safety and stability of train-tram. Parameters of components of bogie system are tuned to minimize the derailment coefficient and the ride comfort index. The results shows that the best comfort index for passenger and minimum derailment coefficient are found. The results also show that this optimized new train-tram model is reliable and practical enough to be applied on real rail vehicle design.  相似文献   

12.
Direct yaw moment control (DYC), which differentially brakes the wheels to produce a yaw moment for the vehicle stability in a steering process, is an important part of electric stability control system. In this field, most control methods utilise the active brake pressure with a feedback controller to adjust the braked wheel. However, the method might lead to a control delay or overshoot because of the lack of a quantitative project relationship between target values from the upper stability controller to the lower pressure controller. Meanwhile, the stability controller usually ignores the implementing ability of the tyre forces, which might be restrained by the combined-slip dynamics of the tyre. Therefore, a novel control algorithm of DYC based on the hierarchical control strategy is brought forward in this paper. As for the upper controller, a correctional linear quadratic regulator, which not only contains feedback control but also contains feed forward control, is introduced to deduce the object of the stability yaw moment in order to guarantee the yaw rate and side-slip angle stability. As for the medium and lower controller, the quantitative relationship between the vehicle stability object and the target tyre forces of controlled wheels is proposed to achieve smooth control performance based on a combined-slip tyre model. The simulations with the hardware-in-the-loop platform validate that the proposed algorithm can improve the stability of the vehicle effectively.  相似文献   

13.
This paper deals with friction-induced vibration of a disc brake system with a constant friction coefficient. A linear, lumped, and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability, and, in order to verify simulations which are based on the theoretical model, an experimental modal test and dynamometer test are performed. The comparison of experimental and theoretical results shows good agreement, and the analysis indicates that modal coupling due to friction forces is responsible for disc brake squeal. Also, squeal type instability is investigated, using a parametric analysis. This indicates which parameters have influence on the propensity of brake squealing. This is helpful for validating the analysis model and establishing confidence in the experimental results of the modified system. These results may also be useful during system development or diagnostic analysis.  相似文献   

14.
For the first time, this paper investigates the application of the concept of Lyapunov exponents to the stability analysis of the nonlinear vehicle model in plane motion with two degrees of freedom. The nonlinearity of the model comes from the third-order polynomial expression between the lateral forces on the tyres and the tyre slip angles. Comprehensive studies on both system and structural stability analyses of the vehicle model are presented. The system stability analysis includes the stability, lateral stability region, and effects of driving conditions on the lateral stability region of the vehicle model in the state space. In the structural stability analysis, the ranges of driving conditions in which the stability of the vehicle model is guaranteed are given. Moreover, through examples, the largest Lyapunov exponent is suggested as an indicator of the convergence rate in which the disturbed vehicle model returns to its stable fixed point.  相似文献   

15.
The traction control system (TCS) might prevent excessive skid of the driving wheels so as to enhance the driving performance and direction stability of the vehicle. But if driven on an uneven low-friction road, the vehicle body often vibrates severely due to the drastic fluctuations of driving wheels, and then the vehicle comfort might be reduced greatly. The vibrations could be hardly removed with traditional drive-slip control logic of the TCS. In this paper, a novel fuzzy logic controller has been brought forward, in which the vibration signals of the driving wheels are adopted as new controlled variables, and then the engine torque and the active brake pressure might be coordinately re-adjusted besides the basic logic of a traditional TCS. In the proposed controller, an adjustable engine torque and pressure compensation loop are adopted to constrain the drastic vehicle vibration. Thus, the wheel driving slips and the vibration degrees might be adjusted synchronously and effectively. The simulation results and the real vehicle tests validated that the proposed algorithm is effective and adaptable for a complicated uneven low-friction road.  相似文献   

16.
A hierarchical control structure is a more suitable structural scheme for integrated chassis control. Generally, this type of structure has two main functions. The upper layer manages global control and force allocation, while the bottom layer allocates realized forces with 4 independent local tire controllers. The way to properly allocate these target forces poses a difficult task for the bottom layer. There are two key problems that require attention: obtaining the nonlinear time-varying coefficient of friction between the tire and different road surfaces and accurately tracking the desired forces from the upper layer. This paper mainly focuses on longitudinal tire-road friction allocation and control strategies that are based on the antilock braking system (ABS). Although it is difficult to precisely measure longitudinal tire-road friction forces for frequently changing road surface conditions, they can be estimated with a real-time measurement of brake force and angular acceleration at the wheels. The Magic Formula model is proposed as the reference model, and its key parameters are identified online using a constrained hybrid genetic algorithm to describe the evolution of tire-road friction with respect to the wheel slip. The desired wheel slip, with respect to the reference tire-road friction force from the top layer, is estimated with the inverse quadratic interpolation method. The tire-road friction controller of the extended anti-lock braking system (Ext-ABS) is designed through use of the nonlinear sliding mode control method. Simulation results indicate that acceptable modifications to changes in road surface conditions and adequate stability can be expected from the proposed control strategy.  相似文献   

17.
戈铭 《城市道桥与防洪》2020,(5):187-190,M0019,M0020
在以往工程实践中,同步顶升技术在公路与市政桥梁改造时应用案例较多,但铁路桥梁大高度整体同步顶升的项目还相对较少。依托某单线铁路特大桥调坡工程,研究了PLC同步顶升技术在多跨简支T梁整体顶升中的应用方案和施工流程,提出了支撑体系稳定性控制、顶升系统可靠度检验以及顶升过程施工监测等施工控制要点。该桥梁体最大顶升高度达0.754 m,整个过程安全可控,且实现了工期和造价双节约。实践证明,PLC同步顶升技术在铁路桥梁坡度调整、支座更换、净空增加等工程中有着较好的应用前景。  相似文献   

18.
通过铣削测力系统测量了人造多晶刚石(PCD)铣刀铣削铝硅合金的铣削力,并建立了端铣刀加工铝硅合金时的铣削力经验公式。研究了切削用量,工件材质及刀具前角等要素对铣削力的影响规律。由于铣削是断续冲击切削,故障刀齿的切入冲击力对刀刃的磨损,破损有重要的作用,探讨了铣时切入角的大小对切入冲击力的作用,得出选择大切入角有利的结论。  相似文献   

19.
Optimal Linear Active Suspensions with Multivariable Integral Control   总被引:5,自引:0,他引:5  
In this paper, an optimal suspension system is derived for a quarter-car model using multivariable integral control. The suspension system features two parts. The first part is an integral control acting on suspension deflection to ensure zero steady-sate offset due to body and maneuvering forces as well as road inputs. The second is a proportional control operating on the vehicle system states for vibration control and performance improvement. The optimal ride performance of the active suspensions based on linear full-state feedback control laws with and without integral control together with the performance of passive suspensions are compared.  相似文献   

20.
?Vehicle dynamic control (VDC) systems play an important role with regard to vehicle stability and safety when turning. VDC systems prevent vehicles from spinning or slipping when cornering sharply by controlling vehicle yaw moment, which is generated by braking forces. Thus, it is important to control braking forces depending on the driving conditions of the vehicle. The required yaw moment to stabilize a vehicle is calculated through optimal control and a combination of braking forces used to generate the calculated yaw moment. However, braking forces can change due to frictional coefficients being affected by variations in temperature. This can cause vehicles to experience stability problems due an improper yaw moment being applied to the vehicle. In this paper, a brake temperature estimator based on the finite different method (FDM) was proposed with a friction coefficient estimator in order to solve this problem. The developed braking characteristic estimation model was used to develop a VDC cooperative control algorithm using hydraulic braking and the regenerative braking of an in-wheel motor. Performance simulations of the developed cooperative control algorithm were performed through cosimulation with MATLAB/Simulink and CarSim. From the simulation results, it was verified that vehicle stability was ensured despite any changes in the braking characteristics due to brake temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号