首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
To address the weight and corrosion challenge in deep-water, replacing the steel tensile armour in flexible pipes with composite materials is an alternative conceptual approach. An axisymmetric structural responses model is built for this novel composite armoured flexible pipe, with interlayer gaps that may occur in the unbonded structure considered through an iterative algorithm. The tensile strength of steel and composite armoured pipes are predicted based on different constitutive relations of steel and composite. Essential quantities are obtained, such as tensile stiffness, deformations of each layer and interlayer gaps or contact pressures. Considering the helix form of carcass and pressure armour, a finite element model is established for the verification of the theoretical model. Case study shows that the tensile stiffness of flexible pipe is overestimated with the interlayer gap ignored. Compared with steel armoured flexible pipe, the composite armoured pipe, whose tensile stiffness decreases less as external pressure increases, meanwhile has higher values of tensile ultimate strength and torsion stiffness. Some suggestions about fiber types and volume fraction for composite tensile strips are given to ensure good performance of axial tensile strength and stiffness.  相似文献   

2.
This article studies the structural response of a 6.0” flexible pipe under pure tension considering intact and damaged conditions. In the damaged condition, several wires of the tensile armor layers are assumed to be broken. A three-dimensional nonlinear finite element (FE) model devoted to analyze the local mechanical response of flexible pipes is employed in this study. This model is capable of representing each tensile armor wire and, therefore, localized defects, including total rupture, may be adequately represented. Results from experimental tests validate the FE predictions and indicate a reduction in the axial stiffness of the pipe, a non-uniform redistribution of forces among the remaining intact wires of the damaged tensile armor layers and high stress concentrations in the wires near the broken ones. Moreover, the FE model indicates that significant normal bending stresses may arise in the pressure armor and inner carcass due to an uneven pressure distribution on these layers. Finally, the results obtained are employed to estimate the pull out capacity of the studied flexible pipe.  相似文献   

3.
An investigation on triggering mechanisms for the birdcaging failure mode of flexible pipes, used in offshore oil and gas production, is carried out. From previous experimental observations, a conjecture is made: the local axisymmetric instability of the external plastic layer, caused by the high radial loading which is internally applied due to the helical armor wires tendency to expand when the pipe is subjected to compression, would be this trigger. A simple instability onset criterion for the external plastic layer, namely, the polymer intrinsic yielding limit stress, is proposed and assessed, analytically, numerically and experimentally for HDPE tubes. Then, previous birdcaging experimental observations are investigated further, focusing on the flexible pipe external plastic layer, to assess the proposed criterion. Strong evidences of validity are obtained.  相似文献   

4.
The constructive disposition of metallic and plastic layers confers flexible pipes with high and low axial stiffness respectively when tensile and compressive loads are applied. Under certain conditions typically found during deepwater installation or operation, flexible pipes may be subjected to high axial compression, sometimes accompanied by bending. If not properly designed, the structure may not be able to withstand this loading and fails. From practical experience observed offshore and in laboratory tests two principal mechanisms, which will be discussed in this paper, have been identified regarding the configuration of the armor wires. When the pipe fails by compression the armor wires may exhibit localized lateral or radial deflections, consequently permanent damage is observed in the armor wires with a sudden reduction of the structure’s axial stiffness. The pressure armor may also unlock, thus causing potential fluid leakage.In this work a finite element model is developed to estimate the critical instability load and failure modes. An axi-symmetric model is constructed employing a complex combination of beam and spring elements. For each armor layer only one wire needs to be modeled, hence the computational cost is minimized without compromising the phenomenon characterization. A parametric case study is performed for a typical flexible pipe structure, where the friction coefficient between the wire armors and the external pressure are varied, and the critical instability loads and failure modes are obtained and results are discussed.  相似文献   

5.
柔性管抗拉伸层是复杂的空间螺旋线结构,其结构响应分析对柔性管疲劳分析、强度分析和屈曲分析有重要作用。文章基于曲梁理论,应用斜驶螺旋线假设和测地线假设两种空间曲线公式,以空间细长杆理论及胡克定律本构方程为基础,采用格林应变张量与第二Kirchoff应力张量度量,对深海无粘结柔性管抗拉伸层螺旋形钢缆结构平衡方程进行了推导,编写了分析程序。利用该程序,分析了抗拉伸层钢缆在轴对称载荷下和弯矩作用下的曲率变化和结构响应;同时利用三维直梁有限元模型与曲梁有限元模型建立数值模型,将程序结果与数值模拟模型结果进行了对比,证明了结果可行性。该结果可为柔性管抗拉伸层结构设计提供快速的预估计方法。  相似文献   

6.
This paper presents an analytical scheme for predicting the collapse strength of a flexible pipe, which considers the structural interaction between relevant layers. The analytical results were compared with a FEA model and a number of test data, and showed reasonably good agreement. The theoretical analysis showed that the pressure armor layer enhanced the strength of the carcass against buckling, though the barrier weakened this effect. The collapse strength of pipe was influenced by many factors such as the inner radius of the pipe, the thickness of the layers and the mechanical properties of the materials. For example, an increase in the thickness of the barrier will increase contact pressure and in turn reduce the critical pressure.  相似文献   

7.
Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models.  相似文献   

8.
Compared to conventional fibre-reinforced composite pipes, fibre-reinforced hybrid composite pipes are more complex and are characterised by the use of hybrid fibres, hybrid matrices, and multiple fibre winding angles. In this study, based on the mechanical model of conventional fibre-reinforced composite pipes, the cross-section division method, the radial pressure on the adjacent layer by spiral wound rope structures, and the calculation method of axial force in each layer were improved. Furthermore, the von Mises stresses in each layer were calculated to discriminate the failure to establish a mechanical model of fibre-reinforced hybrid composite pipes with any number of reinforced layers under axial tension, internal pressure, and external pressure. Experimental data and the finite element method (FEM) were used to verify the reliability of the established model, with the axial tensile mechanical properties analysed based on the established model. The results showed that the large-angle fibres no longer withstood the axial tensile load when the winding angle of the large-angle fibres was greater than 45°. The matrices yielding was much earlier than the fibre breakage. The matrices hybrid methods have a large influence on the axial tensile properties of fibre-reinforced hybrid composite pipes, and improving the material properties of the inner and outer liners can significantly improve the axial tensile properties of fibre-reinforced hybrid composite pipes.  相似文献   

9.
任少飞  唐文勇  薛鸿祥 《船舶力学》2015,(12):1525-1534
基于Abaqus/Explicit准静态和质量放大方法研究了一类典型非粘结柔性立管在压力载荷作用下应变响应特性,对影响立管整体轴向延伸率和绕轴向扭转角度的因素进行了分析。数值模型计入金属层实际截面形状、铺设角度以及几何、接触、材料非线性。计算结果表明:数值解与理论值吻合较好;立管端部边界条件对轴向延伸率影响不大但对绕轴向扭转角度影响较大;抗压铠装层为径向压力主要受力构件,其铺设角度虽然对压溃性能不大,但在应变分析中不可忽略;拉伸铠装层铺设角度对应变影响同样较大。文中数值方法可弥补理论方法限定在小位移、小变形范围,无法计入层间摩擦、材料非线性及初始制造椭圆率等缺陷。  相似文献   

10.
《Marine Structures》2004,17(6):475-500
This paper presents a comprehensive mathematical model for the thermal expansion of pipe-in-pipe and bundle systems that are used in the offshore oil and gas industry. The inner pipe and the outer pipes are assumed to have structural connections through bulkheads at extremities and spacers or centralisers to prevent contact of the inner and the outer pipes. The aim is to calculate the displacement and forces on the bulkheads and axial force in the inner pipe.In addition to protective pipe-in-pipes, short and long pipe-in-pipes are defined and the limits between the two are clearly delineated. Analytical methods are extended to study the effects of exponential temperature gradients along both the inner and the outer pipes, the pipe-in-pipe length, tie-in spoolpieces, inner pipe weight, seabed and spacer friction and relative axial stiffness of the inner and the outer pipes on the thermal expansion characteristics. The iterative approach to solve thermal expansion characteristics proposed can be replaced by analytical calculation in most practical situations. Simple analytical formulae are suggested when the outer pipe temperature is constant. Analytical solutions indicate good agreement with finite element numerical results.  相似文献   

11.
单调荷载作用下PHC管桩的极限变形是判断结构损伤的一项重要参数。为了解桩、土参数对PHC管桩在单调荷载作用下变形的影响,采用ABAQUS有限元软件的纤维梁单元模型和共结点法,建立考虑桩土相互作用的PHC管桩有限元模型,使用P-y土弹簧模拟桩土相互作用,混凝土采用UCONCRETE03本构模型,预应力纵筋采用USTEEL02本构模型,分析配筋率、桩基入土深度、土体不排水抗剪强度、轴压比等参数对PHC管桩极限变形的影响规律。计算结果表明:桩基极限位移随桩基配筋率的提高而增加,但随桩基入土深度、土体不排水抗剪强度、轴压比的增加而减少,并拟合单调荷载作用下的PHC桩基极限位移的计算公式。  相似文献   

12.
The present paper addresses the circular armour wire lateral buckling in umbilicals. An asymmetric non-linear finite element model is developed to analyze a single armour wire subjected to combined constant axial compression and uniform cyclic curvatures. A parametric case study is performed for an armour wire from a nine-hose umbilical cable, where the armour wire pitch number, applied axial compressive load and minimum and maximum curvatures in the applied cyclic bending are varied. The armour wire end shortenings, transverse sliding in cyclic bending, the buckling shapes and equilibrium paths after numerous bending cycles, the critical buckling loads, the stress states at the onset of lateral buckling, and the required number of bending cycles that triggers lateral buckling are obtained and extensively discussed. The critical buckling loads given by the FE model have been compared with an existing analytical formulation, indicating that the analytical model is reliable for small cyclic curvatures. Moreover, an empirical model is proposed for the required number of bending cycles to trigger the lateral buckling and good correlation with the FE results has been observed.  相似文献   

13.
随着高强钢潜艇锥柱结构的广泛应用,影响结构性能的焊接残余应力的测量和残余应力消除的技术备受关注。采用X射线衍射技术对高强钢潜艇锥柱结构内外壳的轴向焊接残余应力进行无损检测。内壳轴向残余应力的分布在焊缝两侧呈双峰形态,均为拉应力,而后随着与焊缝距离的增加,残余应力快速降低;而外壳轴向残余应力在锥端焊趾部分达到最大残余压应力值。还进行了超声冲击消除焊接残余应力前后的对比试验。试验结果表明,超声冲击处理对降低焊缝及近焊缝区的残余应力有很大的益处,残余拉应力经冲击处理后转变为对疲劳强度有利的较大幅值的压应力。  相似文献   

14.
In addition to the traditional hollow circular sections used in marine structures, other hollow sections have attracted the attention of architects and design engineers due to their mechanical characteristics such as torsional rigidity and local strength against impact loading. The purpose of this study is to investigate dynamic response of pipes conveying fluid with variable wall thickness through both circumferential and axial directions. Pipes with variable wall thickness have different flexural rigidities about two different principal axes. This property allows these pipes to be oriented efficiently, meet various design requirements and resist the applied loads. The results of this investigation provide a better insight into the physics and dynamic behavior of non-circular pipes conveying fluid. Two different geometries are studied, (i) the pipe is assumed with a general non-circular cross section with variable wall thickness along the circumferential direction, (ii) both inner and outer boundaries of the pipe cross section are assumed to be circles whereas the wall thickness of the pipe along axial direction is varied with a specified function. The governing differential equations of the problem are derived using Timoshenko beam theory with the effect of shear deformation included in the formulation. The discretization of the problem domain is done using the finite element method. Consequently, a modal analysis is employed to calculate the critical flow velocities of the pipe with clamped-clamped end conditions. The effects of different cross sections on the critical flow velocity are investigated. The importance of Coriolis forces on the presence of coupled-mode flutter and re-stabilization point are also discussed for different values of mass ratio.  相似文献   

15.
Existing rule scantling formulae of plate members are based on conventional plastic design theory, and do not necessarily reflect complicated plate bending phenomena under axial loads. In this study, we first formulated the effect of axial load on the fully plastic moment based on the von Mises yield criterion for longitudinally stiffened plate in addition to the well-known formula for transversely stiffened plate. In addition, we derived a theoretical formulation of the lateral pressure corresponding to 2-point hinge and 3-point hinge formation taking account of the effect of the additional lateral force due to the axial loads on the deflected plating, using a simple plate strip bending model assuming a long plate with a large aspect ratio.Then, a series of elastic-plastic FE analyses was carried out to verify the structural behavior and the effect of axial load on the plate plastic bending strength. The plate strength was evaluated based on the residual deflection criteria of two cases (0.26 mm and 4.0 mm), and the results were compared with the theoretical derivation. As a result, it was found that assumption of linear strength reduction to the axial stress can cover the transversely stiffened plate under compressive axial stress conservatively. As to the transversely stiffened plate under tensile axial stress and the longitudinally stiffened plate, the strength reduction was in accordance with the reduction in the fully plastic moment based on the von Mises yield criterion in the conservative side. Finally, based on the findings, the required plate thickness coefficients were proposed on an empirical basis both for transversely and longitudinally stiffened plate under compressive and tensile axial loads.  相似文献   

16.
This paper presents theoretical and numerical study on bending properties of unbonded flexible risers. To capture nonlinearities in layer's sliding, the stress component due to slip-stick behavior is considered and energy conservation principle considering sliding-caused heat consumption is employed in the analytical model. Besides, a finite element model estimating mechanics of unbonded flexible risers' bending is proposed. In the finite element model, couplings between bending moment–curvature and axial stress as well as contact interaction among layers and tendons have been considered. The theoretical and numerical results were validated against the corresponding experimental data in literature and mutually compared in analyzing nonlinear bending behavior of flexible risers. Moreover, the impacts of axisymmetric loads on riser's bending behavior have been further investigated.  相似文献   

17.
The interest of using thermoplastic composite pipes has increased in offshore deepwater oil fields. Thermoplastic composite pipes consist of several carbon/glass fiber reinforced laminate layers to confer stiffness and strength located between inner and outer homogeneous thermoplastic layers for fluid containment and protection. This paper presents a theoretical analysis for thermoplastic composite pipes under combined pure torsion and thermomechanical loading from operational thermal gradients, considering the inner and outer isotropic homogeneous layers and intermediate transversely isotropic laminate ply layers. Perfect bond between adjacent layers and interfaces continuities are assumed. Based on the obtained stresses in the principal material directions, through-thickness failure indexes related to the von Mises and Maximum Stress or Tsai-Hill criteria are respectively evaluated for homogeneous and laminate layers. For each thermal gradient, the limit torque (i.e. when the failure index is equal to 1) is calculated. From the case study, it is observed that without thermal loading or for small operational temperature, failure occurs in the laminate, otherwise it is observed in the inner homogeneous layer. The thickness of the homogeneous layer significantly affects the limit torque and the absolute values of the limit clockwise and anticlockwise torque slightly differ when the operational temperature is included.  相似文献   

18.
Sandwich pipe (SP) combining high-strength performance and thermal insulation has been considered an effective solution for oil and gas transportation in ultra-deepwater. Strain hardening cementitious composite (SHCC) is well known for its capacity to withstand both tensile load and external hydrostatic pressure. The sandwich pipe considered in the research is constituted of concentric steel pipes with SHCC annular layer. In the present research work, the SHCC was manufactured, and full scale sandwich pipes were assembled. Intact and damaged specimens were submitted to controlled external pressure in a hyperbaric chamber to obtain the collapse and propagation pressures, respectively. Modeling and simulation of the buckle propagation of the SPs were correlated with the experimental results. The results show that sandwich pipe with SHCC core has an excellent structural strength under high external pressure in both intact and damaged conditions. Moreover, the results also show that the interaction between the annular and the inner/outer pipes provides a significant contribution to the buckling resistance under propagation pressure.  相似文献   

19.
本文基于CCS钢制船舶入级规范,研究了大型油船破损状态下的剩余极限强度及其可靠性。根据船舶在碰撞或搁浅事故中舷侧和船底受损位置及受损范围的不同,设定了多种受损模式,计算各模式下的剩余极限强度。进而引入剩余强度指标,验证了其与破损范围之间近似呈线性关系。最后,考虑船舶破损后结构能力的减弱和浮态变化引起的静水弯矩与波浪弯矩的变化的影响,计算了完整及各受损模式下的可靠性指标,确定了大型油船在不同破损模式下剩余极限强度与可靠性指标之间的近似线性关系。  相似文献   

20.
An analytical model is given to investigate the behavior of unbonded flexible pipes under biaxial dynamic bending. The stick-slip conditions of each wire are studied in the framework of incremental analysis by an operator splitting of the time step into a stick-state prediction and a slip-state correction step. The tension gradient is calculated using the classical return-mapping algorithm and the obtained tension gradients are integrated numerically to find the axial tension by imposing appropriate boundary conditions. From the axial tension the bending moments with respect to the principal bending axes of the pipe are obtained. Poisson's effect, bending induced tension in the wire, shear deformations of the supporting plastic layer and the changes of the effective torsion and curvature increments of the wire after slip occurs are taken into account in the model. The results of bending moment–curvature relationship from this model are compared with the test data from simple bending and good correlations are found. The comparison of the biaxial bending moment results between this model and the available model also shows good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号