首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
在丁酸甲酯化学反应机理的基础上,添加了详细的NOx生成机理,得到包含214种物质和1 241个基元反应方程式的生物柴油机理.运用均质零维反应器模型,计算了燃烧过程中各基元反应的ROP(Rate of production,ROP)系数,确定了影响各中间产物生成的主要基元反应方程式.通过ROP分析,阐明了生物柴油燃烧过程...  相似文献   

2.
二甲醚发动机HCCI燃烧的试验和数值模拟研究   总被引:3,自引:0,他引:3  
结合详细化学反应动力学机理,采用单区模型计算了二甲醚发动机均质充量压缩燃烧过程中缸内压力、缸内温度、重要中间产物浓度、NOx 浓度等的变化,并将计算结果与试验结果进行了比较。结果表明,二甲醚均质充量压缩燃烧具有两阶段着火特性,着火时间、NOx 排放和缸内压力变化趋势预测准确。  相似文献   

3.
通过构建由228种组分和1584个基元反应组成的甲醇‐柴油 PAHs计算模型,研究了燃料改性方案、空气稀释比以及过量空气系数、初始温度,初始压力对甲醇‐柴油PAHs的影响。结果表明,甲醇‐柴油PAHs模型能准确预测甲醇‐柴油燃烧过程中的反应温度,甲醇摩尔分数,反应中间产物CO ,CO2,O2浓度随时间的变化规律和着火延迟。通过进气预处理,降低空气稀释因子可以有效降低甲醇‐柴油燃烧过程中 PAHs的浓度;采用氢气、甲烷作为燃料添加剂进行燃料改性可以有效改善油气混合,提高火焰温度和火焰的绝热燃烧速度,有利于 PAHs的氧化分解。提高过量空气系数可以增加反应中间产物H和OH自由基的数量,降低芳香烃各组分的浓度;提高反应的初始温度,降低反应初始压力,使得燃烧化学反应始点提前,有利于降低PAHs的浓度。  相似文献   

4.
通过AVL Fire软件建立了4B26柴油机的燃烧模型,并耦合甲醇-正庚烷的化学反应机理文件,研究了柴油机燃用甲醇-柴油混合燃料着火过程中,缸内温度、燃料浓度和中间产物的变化规律,并分别依据放热率、中间产物、温度的变化对滞燃期进行了计算。研究结果表明,在甲醇-正庚烷着火之前,与甲醇分解有关的中间产物中,CH_2O,H_2O_2,OH变化最显著,且中间产物浓度呈双峰走势;-7°~-5°范围内,与甲醇相比,正庚烷发生了明显的脱氢反应。正庚烷低温分解相关的主要基元反应中,生成CH_4,C_2H_4,C_3H_6的基元反应更容易发生。根据瞬时放热率、正庚烷脱氢、OH浓度、缸内温度场变化等方法确定的甲醇-正庚烷着火时刻分别为-7.2°,-7°~-5°,-2.4°,-5.8°。几种判断方法中,依据OH浓度变化判断的着火时刻较晚。  相似文献   

5.
汽车废气中的有害气体NOx是在高温条件下,混合气中的氮与氧直接反应的生成物。气缸内的燃烧温度越高,持续时间越长,点火提前角越大,所生成的NOx量也越多。减少NOx生成量的最有效办法是降低气缸内的燃烧温度和速度,具体措施是采用废气再循环(Exhaust Gas Recirculation,简称为"EGR")的方  相似文献   

6.
对参比燃料、甲醇及甲醇—参比燃料混合燃料的主要反应历程进行了分析,利用详细反应机理研究了甲醇—参比燃料混合燃料燃烧时基元反应的相互影响特性。采用集总反应法构建了一个包含45种物质、75个反应的甲醇—参比燃料混合燃料简化反应机理,并利用激波管试验、流反应器试验、详细机理计算结果和HCCI发动机试验对该简化机理进行验证。结果表明,简化机理计算结果与试验结果及详细机理计算结果能够很好地吻合。  相似文献   

7.
在发动机气缸内,汽油和空气混合并燃烧,大部分生成二氧化碳(CO_2)和水(H_2O),但也有一部分由于不完全燃烧生成一氧化碳(CO)和碳氢化合物(HC),此外,当燃烧温度很高时,空气中氮与未燃的氧起反应生成氮氧化物(NOx)。CO、HC和NOx是汽车排放的主要污染物。掌握CO、HC和  相似文献   

8.
TBD234柴油机有害物生成过程仿真研究   总被引:1,自引:0,他引:1  
针对舰用TBD234柴油机燃烧室结构及共轨喷射条件下的工作特点,确立标定工况下的燃烧、NOx生成和炭烟生成模型,并合理修正了模型参数。利用CFD软件对其燃烧过程进行仿真计算,得到全过程的有害物组分浓度分布结果。结果显示NOx生成主要受燃烧温度和混合气浓度的影响,炭烟主要产生于浓混合气且贫氧的区域。从NOx和炭烟结果的对比发现二者分布区域形成互补关系,反映出控制NOx和控制炭烟的矛盾。仿真结果与实际情况较好吻合,从而验证了仿真参数选取的有效性。  相似文献   

9.
正废气再循环装置(简称EGR),主要用于减少NOx的生成量、减少废气污染。因为NOx是在高温富氧的条件下生成的,引入废气再燃烧,可降低混合气的燃烧温度,可以抑制NOx的生成量。废气再循环装置通过EGR阀把少量的废气引入进气歧管与混合气混合,进入气缸燃烧。废气中几乎不含氧,是不可燃气体。这些气体与混合气混合使其可燃成份下降,降低了发动机燃烧时的温度,从而减少了NOx的生成量。  相似文献   

10.
发动机排放控制   总被引:1,自引:1,他引:0  
1 发动机污染物的产生 发动机的污染物主要是CO和HC,还有一部分NOx.CO是烃类燃料燃烧的中间产物.排气中的CO主要是在局部缺氧或低温下由于烃的不完全燃烧造成的.  相似文献   

11.
基于1台高压共轨涡轮增压柴油机,采用不同的预喷正时、预喷油量与后喷正时等,研究了多次喷射对燃烧放热、排放生成与燃油经济性的影响,以实现均质压燃和低温燃烧过程。研究结果表明:随预喷正时提前,缸内峰值压力降低,主燃阶段的滞燃期缩短,NOx和炭烟排放均降低;随预喷油量增加,预喷阶段燃烧的放热率和最大压力升高率增大,NOx和HC排放增大,而PM和CO排放降低;随后喷始点推迟,缸内压力与主放热率峰值差异变小,NOx排放降低,但炭烟排放先增大后逐渐降低。  相似文献   

12.
通过程序升温氧化反应(TPO)技术对Ce0.5Zr0.5O2固溶体催化氧化炭粒的活性进行了评价,考察了反应气氛中的O2体积分数,NO,CO2,H2O对炭粒催化燃烧过程的影响。结果表明,反应气氛对炭粒催化燃烧的过程有很大的影响,O2体积分数的变化决定了反应的速度控制步骤;由于NO氧化产生的NO2具有更强的氧化能力,因此NO对炭粒的燃烧具有促进作用;CO2的存在阻碍了反应产物CO2的释放,从而影响了炭粒的燃烧过程;H2O对炭粒的催化燃烧过程没有影响。  相似文献   

13.
利用CFD模拟软件Fire模拟研究了柴油机不同径深比的缩口形燃烧室对缸内混合气形成、燃烧过程和排放物形成的影响。研究结果表明:三维仿真模拟缸内压力和放热率曲线与试验值基本一致;SF5型燃烧室喷雾贯穿距长,喷雾碰壁早,燃油蒸气反弹使得喷雾分布不均匀,局部出现缺氧,炭烟排放较高;SF5型燃烧室缸内混合气混合良好,燃烧完全,缸内温度较高,NOx生成量大,可以采取推迟喷油的方式降低缸内燃烧温度,从而降低NOx排放。  相似文献   

14.
针对预混合氢气的柴油机,在AVL Fire软件上建立了计算模型,并与试验结果进行对比,验证模型的准确性。在此基础上改变了喷射策略,对发动机缸内工作过程及相应的燃烧和排放性能进行数值模拟和分析。研究结果表明:随着预混合氢气质量分数的增加,缸内压力和温度升高,NOx 排放恶化,Soot排放改善;随着预喷射油量和预喷间隔角的增加,NOx 质量分数升高,Soot质量分数降低;随着后喷射喷油量的增加,缸内压力和放热率稍微减小,NOx 和Soot质量分数降低;随着后喷间隔角的增加,缸内压力、放热率、NOx 和Soot排放均未发生明显变化。  相似文献   

15.
以点燃式汽油转子发动机为研究对象,建立了相应的湍流和燃烧模型,实现了发动机工作过程的三维动态模拟,并利用试验结果进行对比验证。在此模型基础上,模拟计算和分析了4种不同点火位置对缸内压力、温度、火焰传播及NO_x生成的影响。结果表明:点火位置选择在燃烧室中轴线上,与转子凹坑中心位置重合,能优化燃烧,获取较大的功率;在燃烧室后部点火时,燃烧初期火焰传播速度快,压力升高率大,但是受限于燃烧室后部燃料少,压力峰值不高,且NO_x的生成量偏高;在燃烧室前部点火时,在补燃期阶段燃烧速度最快,但是点燃后压力升高阶段的燃烧效率一般;点火位置位于燃烧中轴线两侧错位排布时,燃烧效率低下导致压力峰值最低,同时NO_x的生成量稍高;一定工况下,双点火位置的坐标分别为(10 mm,-56 mm,-37.2 mm)和(-10 mm,-56 mm,-37.2mm)时,该发动机能获得最大的功率且NO_x生成量较少。  相似文献   

16.
加载停滞时间对柴油机瞬态性能的影响   总被引:1,自引:0,他引:1  
为了改善柴油机瞬态加载过程中燃烧与排放性能恶化的问题,在一台增压中冷柴油机上,利用瞬态测控系统,试验研究了先快后慢的多段加载策略,探索不同的加载停滞时间对柴油机θCA10,θCA50,烟度和CO,NOx等排放物的影响规律。试验结果表明:与匀速加载策略相比,加载停滞时间越长,排放性能越好,烟度和CO峰值最大分别降低20.8%和38.32%,但NOx略有增加;在第二段加载过程中θCA10和θCA50延后程度降低;加载过程后期缸内空燃比下降趋势更加缓和。  相似文献   

17.
应用0-D单区HCCI发动机模型耦合乙醇氧化反应详细化学动力学机理,对乙醇HCCI发动机的工作区域进行了模拟研究。确定了由过量空气系数(φa)和EGR率表示的HCCI工作区域,分析了工作区域内的排放性能、动力性能以及指示热效率。研究结果表明,在无EGR的工况下,从a=3.2到φa=8.5乙醇可以实现HCCI燃烧,φa<3.2时,出现爆震,必须加入EGR才能抑制爆震燃烧,最大的EGR率达到52%。在HCCI工作区域内,NOx排放较低,最大排放为140×10-6,CO排放较高,φa和EGR率对其影响很大。工作区域内的热效率较高,最大可达到34%,指示平均有效压力受EGR的影响较大,最大峰值达0.5 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号