首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highway work zones caused excessive delay to road users. To reduce user and maintenance costs, work zones shall be designed and scheduled accordingly. An analytical model is developed to jointly optimize work zone lengths and schedule as well as diverted traffic volume for highway maintenance projects, considering time‐varying demand, variable maintenance cost, and various production rates of maintenance crew. With a genetic algorithm, an iterative procedure is developed to search for the optimal solution. A numerical example is illustrated, in which various traffic mitigation plans for a highway maintenance project are evaluated. A sensitivity analysis is conducted, and results indicate the threshold volumes for various conditions (e.g., maintenance crews and capacity of the work zone) at which diverting traffic is desirable. This study demonstrates an effective approach to search for the optimal work zone schedule, which is also applicable to evaluate the effectiveness of traffic diversion plans for a pre‐planned work zone schedule. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This study aims to develop work zone speed‐flow and capacity models, which incorporate work zone configuration factors including the number of work zones, geometrical alignment, work zone speed limit, and work zone length. On the basis of the traffic data from six work zone sites with various work zone configurations, two nonlinear traffic speed and flow models including work zone configuration factors are developed for the uncongested and congested traffic conditions, respectively. A work zone capacity model is proposed on the basis of the two models. The three models can further be used to examine the effects of work zone configuration factors on the speed‐flow relationship and capacity at work zones. Results show that traffic speed, traffic flow, and work zone capacity increase with the posted speed limit. Traffic speed under uncongested conditions decreases with the geometric alignment, the number of work zones, work zone length, and heavy vehicle percentage. Under congested conditions, the increase of the number of work zones is found to exhibit a larger negative impact on the traffic flow than the increase of geometric alignment. The number of work zones is also found to have the largest negative impacts on work zone capacity, followed by the geometric alignment. Short work zone length exhibits a relatively minor contribution to increasing work zone capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
An improved cellular automata model for heterogeneous work zone traffic   总被引:1,自引:0,他引:1  
This paper aims to develop an improved cellular automata (ICA) model for simulating heterogeneous traffic in work zone. The proposed ICA model includes the forwarding rules to update longitudinal speeds and positions of work zone vehicles. The randomization probability parameter used by the ICA is formulated as a function of the activity length, the transition length and the volumes of different types of vehicles traveling across work zone. Compared to the existing cellular automata models, the ICA model possesses a novel and realistic lateral speed and position updating rule so that the simulation of vehicle’s lateral movement in work zone is close to the reality. The ICA model is calibrated and validated microscopically and macroscopically by using the real work zone data. Comparisons of field data and ICA for trajectories, speed and speed–flow relationship in work zone show very close agreement. Finally, the proposed ICA model is applied to estimate traffic delay occurred in work zone.  相似文献   

4.
This paper presents a probabilistic delay model for signalized intersections with right‐turn channelization lanes considering the possibility of blockage. Right‐turn channelization is used to improve the capacity and to reduce delay at busy intersections with a lot of right‐turns. However, under heavy traffic conditions the through vehicles will likely block the channelization entrance that accrues delay to right‐turn vehicles. If the right‐turn channelization gets blocked frequently, its advantage in reducing the intersection delay is neglected and as a result the channelization lane becomes inefficient and redundant. The Highway Capacity Manual (HCM) neglects the blockage effect, which may be a reason for low efficiency during peak hours. More importantly, using HCM or other standard traffic control methods without considering the blockage effects would lead to underestimation of the delay. To overcome this issue, the authors proposed delay models by taking into account both deterministic and random aspects of vehicles arrival patterns at signalized intersections. The proposed delay model was validated through VISSIM, a microscopic simulation model. The results showed that the proposed model is very precise and accurately estimates the delay. In addition, it was found that the length of short‐lane section and proportion of right‐turn and through traffic significantly influence the approach delay. For operational purposes, the authors provided a step‐by‐step delay calculation process and presented approach delay estimates for different sets of traffic volumes, signal settings, and short‐lane section lengths. The delay estimates would be useful in evaluating adequacy of the current lengths, identifying the options of extending the short‐lane section length, or changing signal timing to reduce the likelihood of blockage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper proposed a methodology to estimate rear‐end crash potential of the merging vehicles traveling in the merge lane, on the basis of the traffic data extracting from the available videotapes. First, we developed a binary logit model to identify drivers' merging behavior in the work zone merging area. Subsequently, the occurrence potential of rear‐end crash based on time‐to‐collision was computed between the merging vehicle and its neighboring vehicles. The overall crash potential of the merging vehicle was finally determined. It was found that the crash potential decreases with the remaining distance to work zone. Moreover, there will be a rear‐end crash potential of 4.0% if the merging vehicle fails to complete merging at the end of work zone merging area. If the merging vehicle takes an early merge, there will be a lower rear‐end crash potential (1.2%). These findings suggest that we should encourage merging vehicles to take early merges for improving the traffic safety in the work zone merging areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Developing demand responsive transit systems are important with regard to meeting the travel needs for elderly people. Although Dial‐a‐ride Problems (DARP) have been discussed for several decades, most researchers have worked to develop algorithms with low computational cost under the minimal total travel costs, and fewer studies have considered how changes in travel time might affect the vehicle routes and service sequences. Ignoring such variations in travel time when design vehicle routes and schedules might lead to the production of inefficient vehicle routes, as well as incorrect actual vehicle arrival times at the related nodes. The purpose of this paper is to construct a DARP formulation with consideration of time‐dependent travel times and utilizes the traffic simulation software, DynaTAIWAN, to simulate the real traffic conditions in order to obtain the time‐dependent travel time matrices. The branch‐and‐price approach is introduced for the time‐dependent DARP and tested by examining the sub‐network of Kaohsiung City, Taiwan. The numerical results reveal that the length of the time window can significantly affect the vehicle routes and quantitative measurements. As the length of the time window increases, the objective value and the number of vehicles will reduce significantly. However, the CPU time, the average pickup delay time, the average delivery delay time and the average actual ride time (ART)/direct ride time (DRT) will increase significantly as the length of the time window increases. Designing the vehicle routes to reduce operating costs and satisfy the requirements of customers is a difficult task, and a trade‐off must be made between these goals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Work zone related traffic delay is an important cost component on freeways with maintenance activities. This study demonstrates that delays may be underestimated by using the deterministic queuing theory. Computer simulation is a valuable approach of estimating delay under a variety of existing and future conditions. However, a single simulation run, which can be quite costly in terms of both computer and analyst time, produces a delay estimate for only one traffic level under one set of conditions. A method is developed in this paper to approximate delays by integrating limited simulation data, obtained from CORSIM and the concept of deterministic queuing theory, while various geometric conditions and time‐varying traffic distribution are considered. A calibrated and validated simulation model that can reflect work zone traffic operations on a segment of Interstate 1–80 in New Jersey is used to generate data for developing the proposed model. The comparison of delays estimated by the deterministic queuing model and the proposed model is conducted, while factors affecting the accuracy of the delay estimates are discussed.  相似文献   

8.
This paper aims to investigate the speed-flow relationship and drivers’ merging behavior in work zone merging areas. It first proposes lane-based speed-flow models, incorporating traffic conflicts among the lanes. It proceeds to develop a desired merging location model determining where drivers start to consider merging and a binary logit model that is applied to estimate the probabilities that drivers will merge into current adjacent gaps. A merging distance model is also proposed to find the 85th percentile of the merging distance. Finally, real work zone traffic data in Singapore are used to calibrate and evaluate the developed models. The findings show that the speed-flow relationship in the through lane is affected by the merge lane traffic under uncongested circumstances. Satisfactory results indicate that the merging behavioral models can competently predict drivers’ merging behavior and that the merging distance model could provide accurate information for traffic engineers to calculate the merge lane length.  相似文献   

9.
Freeway‐to‐freeway connector metering is a cost‐effective and proven freeway management strategy for relieving recurrent congestion. However, one of the critical challenges in design and operation of freeway‐to‐freeway connector metering is the lack of up‐to‐date queue storage length design guidance. In this study, it was found that ramp queue is dynamically related to the metering rate, on‐ramp demand, and traffic flow arrival pattern. Hence, simply using an average demand cannot provide accurate queue length estimation and is also not suitable for queue storage design where the maximum or a percentile queue length is generally used. A mesoscopic queue length simulation model was developed based on the input–output method for estimating queue lengths under various demand‐to‐capacity ratio scenarios. Simulation results indicate that for under‐saturated situations, the ramp queue may exist temporally due to the random short‐term surge of traffic arrivals, and the exponential function could best capture the relationship between queue length and demand‐to‐capacity ratio. For over‐saturated situations, the ramp queue tends to prolong linearly with the demand‐to‐capacity ratio. Based on the simulation, it was recommended that queue storage length be designed as 4.3% of on‐ramp demand when demand is lower than 1200 vph or 2.3% when demand is between 1200 and 2400 vph. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
On two‐lane roadways, when provision should be made for alternative one‐way movement (for construction or maintenance), the traffic characteristics differ from normal operation in which no lane is closed. The purpose of this study is to derive optimal strategies for controlling, by means of traffic signals, the one lane operation (in two‐way roadways). In this study, strategies to determine the optimal length of the closed one‐lane section during construction and maintenance work are established. This length minimizes the objective function representing the tradeoff between delay cost and operational cost. Using the length value obtained by the proposed model, plus a timing methodology, the overall cost of operating the closed highway section can be minimized. The sensitivity analysis of the optimal solution for the section length is examined with respect to the input variables. This analysis shows that for very low traffic flow values (less than 100 vph per direction), the solution is very sensitive to fuel price changes, while for greater flow values, the solution is insensitive to this change. Similar results are obtained for changes in the worker's wage which is part of both the operational and the delay cost. That is, the section's length is sensitive to wage changes at low traffic flow and insensitive otherwise. Based on the results presented in this study, it is possible to establish a guideline for the section's length determination. The control measure can emerge from a pair of traffic signals that can be installed at both ends of the closed highway segment. This traffic control system is also described in the study in terms of its components and operational features and advantages.  相似文献   

11.
Short‐term traffic flow prediction is fundamental for the intelligent transportation system and is proved to be a challenge. This paper proposed a hybrid strategy that is general and can make use of a large number of underlying machine learning or time‐series prediction models to capture the complex patterns beneath the traffic flow. With the strategy, four different combinations were implemented. To consider the spatial features of traffic phenomenon, several different state vectors including different observations were built. The performance of the proposed strategy was investigated using the traffic flow measurements from the Traffic Operation and Safety Laboratory in Wisconsin, USA. The results show the overall performance of hybrid strategy is better than a single model. Also, incorporating observations from adjacent junctions can improve prediction accuracy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Traffic flow prediction is an essential part of intelligent transportation systems (ITS). Most of the previous traffic flow prediction work treated traffic flow as a time series process only, ignoring the spatial relationship from the upstream flows or the correlation with other traffic attributes like speed and density. In this paper, we utilize a linear conditional Gaussian (LCG) Bayesian network (BN) model to consider both spatial and temporal dimensions of traffic as well as speed information for short‐term traffic flow prediction. The LCG BN allows both continuous and discrete variables, which enables the consideration of categorical variables in traffic flow prediction. A microscopic traffic simulation dataset is used to test the performance of the proposed model compared to other popular approaches under different predicting time intervals. In addition, the authors investigate the importance of spatial data and speed data in flow prediction by comparing models with different levels of information. The results indicate that the prediction accuracy will increase significantly when both spatial data and speed data are included. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an integrated model for optimizing lane assignment and signal timing at tandem intersection, which is introduced recently. The pre‐signal is utilized in the tandem intersection to reorganize the traffic flow; hence, the vehicles, regardless of whether left‐turns or through vehicles, can be discharged in all the lanes. However, the previous work does not consider the extra traffic disruption and the associated delay caused by the additional pre‐signal. In the paper, the extra delay aroused by the coordination is incorporated in a lane assignment and signal timing optimization model, and the problem is converted into a mixed‐integer non‐linear programming. A feasible directions method is hence introduced to solve the mixed‐integer non‐linear programming. The result of the optimization shows that the performance of the tandem intersection is improved and the average delay is minimized. The comparison between the tandem and the conventional configuration is presented, and the results verify that the former shows better performance than the latter. In addition, the optimal sequence corresponding to the turning proportion and the optimal lane assignment at the upstream approach of the pre‐signal are presented. Furthermore, if the number of lanes is equal in all arms, the paper proves that the average delay will be reduced if lane assignment is proportional to the turning proportion and the vehicles with low proportion are discharged in advance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a dynamic network‐based approach for short‐term air traffic flow prediction in en route airspace. A dynamic network characterizing both the topological structure of airspace and the dynamics of air traffic flow is developed, based on which the continuity equation in fluid mechanics is adopted to describe the continuous behaviour of the en route traffic. Building on the network‐based continuity equation, the space division concept in cell transmission model is introduced to discretize the proposed model both in space and time. The model parameters are sequentially updated based on the statistical properties of the recent radar data and the new predicting results. The proposed method is applied to a real data set from Shanghai Area Control Center for the short‐term air traffic flow prediction both at flight path and en route sector level. The analysis of the case study shows that the developed method can characterize well the dynamics of the en route traffic flow, thereby providing satisfactory prediction results with appropriate uncertainty limits. The mean relative prediction errors are less than 0.10 and 0.14, and the absolute errors fall in the range of 0 to 1 and 0 to 3 in more than 95% time intervals respectively, for the flight path and en route sector level. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This paper focuses on computational model development for the probit‐based dynamic stochastic user optimal (P‐DSUO) traffic assignment problem. We first examine a general fixed‐point formulation for the P‐DSUO traffic assignment problem, and subsequently propose a computational model that can find an approximated solution of the interest problem. The computational model includes four components: a strategy to determine a set of the prevailing routes between each origin–destination pair, a method to estimate the covariance of perceived travel time for any two prevailing routes, a cell transmission model‐based traffic performance model to calculate the actual route travel time used by the probit‐based dynamic stochastic network loading procedure, and an iterative solution algorithm solving the customized fixed‐point model. The Ishikawa algorithm is proposed to solve the computational model. A comparison study is carried out to investigate the efficiency and accuracy of the proposed algorithm with the method of successive averages. Two numerical examples are used to assess the computational model and the algorithm proposed. Results show that Ishikawa algorithm has better accuracy for smaller network despite requiring longer computational time. Nevertheless, it could not converge for larger network. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper investigates a traffic volume control scheme for a dynamic traffic network model which aims to ensure that traffic volumes on specified links do not exceed preferred levels. The problem is formulated as a dynamic user equilibrium problem with side constraints (DUE-SC) in which the side constraints represent the restrictions on the traffic volumes. Travelers choose their departure times and routes to minimize their generalized travel costs, which include early/late arrival penalties. An infinite-dimensional variational inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we establish an existence result for the DUE-SC by showing that the VI admits at least one solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an equivalent optimal control problem. The Lagrange multipliers associated with the side constraints as derived from the optimality condition of the DUE-SC provide the traffic volume control scheme. The control scheme can be interpreted as additional travel delays (either tolls or access delays) imposed upon drivers for using the controlled links. This additional delay term derived from the Lagrange multiplier is compared with its counterpart in a static user equilibrium assignment model. If the side constraint is chosen as the storage capacity of a link, the additional delay can be viewed as the effort needed to prevent the link from spillback. Under this circumstance, it is found that the flow is incompressible when the link traffic volume is equal to its storage capacity. An algorithm based on Euler’s discretization scheme and nonlinear programming is proposed to solve the DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed traffic volume control scheme.  相似文献   

17.
Work zones exist widely on urban arterials in the cities that are undergoing road construction or maintenance. However, the existing studies on arterial work zones are very limited, especially on the work zones at urban intersections, although they have a severe negative impact on the urban traffic system. For the first time, this study focuses on how work zones reduce intersection capacity. A type of widely observed work zone, the straddling work zone that straddles on a road segment and an intersection, is studied. A linear regression model and a multiplicative model suggested by Highway Capacity Manual are proposed respectively to determine the saturation flow rate of the signal intersection with the straddling work zone. The data of 22 straddling work zones are collected and used to evaluate the performances of the proposed models. The results display that the linear regression model outperforms the multiplicative model suggested by Highway Capacity Manual. The study also reveals that reducing approach (or exit) lanes and the mixture of motor vehicles and non‐motor vehicles (and pedestrians) can significantly decrease the capacity of the intersection with straddling work zone. Therefore, in setting a straddling work zone, workers should try to ensure that the intersection approach and exit are unobstructed and set a separation for non‐motors and pedestrians to avoid mixed traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper addresses a general stochastic user equilibrium (SUE) traffic assignment problem with link capacity constraints. It first proposes a novel linearly constrained minimization model in terms of path flows and then shows that any of its local minimums satisfies the generalized SUE conditions. As the objective function of the proposed model involves path‐specific delay functions without explicit mathematical expressions, its Lagrangian dual formulation is analyzed. On the basis of the Lagrangian dual model, a convergent Lagrangian dual method with a predetermined step size sequence is developed. This solution method merely invokes a subroutine at each iteration to perform a conventional SUE traffic assignment excluding link capacity constraints. Finally, two numerical examples are used to illustrate the proposed model and solution method.  相似文献   

19.
Lane closures due to highway work zones present many challenges to the goal of ensuring smooth traffic operations and a safe environment for both drivers and workers. Late merge behavior at a work zone closure is a dangerous behavior that impacts the traffic conflicts upstream of work zone closures. This paper analyzes the safety impacts of using a signalized lane control strategy at the work zone merge points. To achieve the objective of this research, a field study has been conducted at a highway work zone to collect traffic and driver behavior data, and a two-stage, simulation-based approach is used to analyze the safety impacts of implementing a signalized lane merge control strategy at the studied work zone. In the first stage, micro-simulation models are developed and calibrated based on field data to generate vehicle trajectories. In the second stage, the U.S. Federal Highway Administration’s Surrogate Safety Assessment Model is employed to identify potential conflicts under different traffic conditions. The paper concludes that a proposed signal control device could significantly reduce lane-change conflicts at work zone merge points. In addition, recommendations on the signal cycle length and timing splits are provided.  相似文献   

20.
Short‐term traffic flow prediction in urban area remains a difficult yet important problem in intelligent transportation systems. Current spatio‐temporal‐based urban traffic flow prediction techniques trend aims to discover the relationship between adjacent upstream and downstream road segments using specific models, while in this paper, we advocate to exploit the spatial and temporal information from all available road segments in a partial road network. However, the available traffic states can be high dimensional for high‐density road networks. Therefore, we propose a spatio‐temporal variable selection‐based support vector regression (VS‐SVR) model fed with the high‐dimensional traffic data collected from all available road segments. Our prediction model can be presented as a two‐stage framework. In the first stage, we employ the multivariate adaptive regression splines model to select a set of predictors most related to the target one from the high‐dimensional spatio‐temporal variables, and different weights are assigned to the selected predictors. In the second stage, the kernel learning method, support vector regression, is trained on the weighted variables. The experimental results on the real‐world traffic volume collected from a sub‐area of Shanghai, China, demonstrate that the proposed spatio‐temporal VS‐SVR model outperforms the state‐of‐the‐art. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号