首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This paper examines the reliability measures of freight travel time on urban arterials that provide access to an international seaport. The findings indicate that the reliability index calculated by the median of travel time, which is less sensitive to extreme values in a highly skewed distribution, is more appropriate. This paper also examines several statistical distributions of travel time to determine the best fit to the data of freight trips. The results of goodness-of-fit tests indicate that the log-logistic is the best statistical function for freight travel time during the midday off-peak period. However, the lognormal distribution represents a better fit to arterials with heavily congested traffic during peak periods. Additionally, travel time prediction models identify the relationships between travel time, speeds and other factors that affect travel time reliability. The analysis suggests that incident-induced delays and speed fluctuations primarily contributed to the unreliability of freight movement on the urban arterials.  相似文献   

2.
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper proposes a framework for evaluating the distributions of stochastic dynamic link travel time and journey time as well as assessing the journey time reliability. Due to the stochastic nature of the flow profiles, the paper devises a sampling process to estimate the probability mass function (PMF) of the link travel time. This sampling process defines a likelihood concept that measures the probability of the difference between the cumulative stochastic link inflow and outflow profiles to be less than or equal to a prescribed bound. Based on this likelihood measure, the probability mass function (PMF) of the link travel time is evaluated over an appropriate sampling interval. The PMF of the journey time is then evaluated by extending the deterministic nested delay operator to a stochastic version which is defined as a series of “nested” conditional probabilities of the link travel time PMFs along the route. This paper also proposes a method to fit the PMF of the journey time to a class of statistical distribution to determine its skewness, which is useful in the analysis of journey time reliability. The paper then analyzes journey time reliability via the properties of dynamic travel time distributions such as confidence intervals and shape parameters. The proposed algorithm is applied to estimate the stochastic journey time on a freeway corridor from the stochastic cumulative inflow and outflow profiles generated from the stochastic cell transmission model. This methodology is validated with two empirical studies: (i) estimations of journey time distribution and reliability analysis for one short freeway segment in California during a specific time period and (ii) the effects of traffic incidents on journey time reliability for a long expressway corridor of Hanshin expressway (between Osaka and Kobe) in Japan.  相似文献   

4.
A study of travel time and reliability on arterial routes   总被引:1,自引:0,他引:1  
This study is concerned with travel time and operational reliability on arterial routes. Reliability is viewed in terms of the consistency of operation of the route under investigation and defined in terms of the inverse of the standard deviation of the travel time distribution.Under certain assumptions, travel time behavior on an arterial route is seen to closely follow a gamma distribution; the reliability measure can be derived accordingly. Utilizing arterial travel time data from the Chicago area, both a regression and a statistical model are show to serve as efficient techniques in predicting reliability. The prediction models are evaluated.  相似文献   

5.
In many countries, decision-making on proposals for national or regional infrastructure projects in passenger and freight transport includes carrying out a cost–benefit analysis for these projects. Reductions in travel times are usually a key benefit. However, if a project also reduces the variability of travel time, travellers, freight operators and shippers will enjoy additional benefits, the ‘reliability benefits’. Until now, these benefits are usually not included in the cost–benefit analysis. To include reliability of travel or transport time in the cost–benefit analysis of infrastructure projects not only monetary values of reliability, but also reliability forecasting models are needed. As a result of an extensive feasibility study carried out for the German Federal Ministry of Transport, Building and Urban Development this paper aims to provide a literature overview and outcomes of an expert panel on how best to calculate and monetise reliability benefits, synthesised into recommendations for implementing travel time reliability into existing transport models in the short, medium, and long term. The paper focuses on road transport, which has also been the topic for most of the available literature on modelling and valuing transport time reliability.  相似文献   

6.
Travel time estimation and prediction on urban arterials is an important component of Active Traffic and Demand Management Systems (ATDMS). This paper aims in using the information of GPS probes to augment less dynamic but available information describing arterial travel times. The direction followed in this paper chooses a cooperative approach in travel time estimation using static information describing arterial geometry and signal timing, semi-dynamic information of historical travel time distributions per time of day, and utilizes GPS probe information to augment and improve the latter. First, arterial travel times are classified by identifying different travel time states, then link travel time distributions are approximated using mixtures of normal distributions. If prior travel time data is available, travel time distributions can be estimated empirically. Otherwise, travel time distribution can be estimated based on signal timing and arterial geometry. Real-time GPS travel time data is then used to identify the current traffic condition based on Bayes Theorem. Moreover, these GPS data can also be used to update the parameters of the travel time distributions using a Bayesian update. The iterative update process makes the posterior distributions more and more accurate. Finally, two comprehensive case studies using the NGSIM Peachtree Street dataset, and GPS data of Washington Avenue in Minneapolis, were conducted. The first case study estimated prior travel time distributions based on signal timing and arterial geometry under different traffic conditions. Travel time data were classified and corresponding distributions were updated. In addition, results from the Bayesian update and EM algorithm were compared. The second case study first tested the methodologies based on real GPS data and showed the importance of sample size. In addition, a methodology was proposed to distinguish new traffic conditions in the second case study.  相似文献   

7.
This study proposes an approach to modeling the effects of daily roadway conditions on travel time variability using a finite mixture model based on the Gamma–Gamma (GG) distribution. The GG distribution is a compound distribution derived from the product of two Gamma random variates, which represent vehicle-to-vehicle and day-to-day variability, respectively. It provides a systematic way of investigating different variability dimensions reflected in travel time data. To identify the underlying distribution of each type of variability, this study first decomposes a mixture of Gamma–Gamma models into two separate Gamma mixture modeling problems and estimates the respective parameters using the Expectation–Maximization (EM) algorithm. The proposed methodology is demonstrated using simulated vehicle trajectories produced under daily scenarios constructed from historical weather and accident data. The parameter estimation results suggest that day-to-day variability exhibits clear heterogeneity under different weather conditions: clear versus rainy or snowy days, whereas the same weather conditions have little impact on vehicle-to-vehicle variability. Next, a two-component Gamma–Gamma mixture model is specified. The results of the distribution fitting show that the mixture model provides better fits to travel delay observations than the standard (one-component) Gamma–Gamma model. The proposed method, the application of the compound Gamma distribution combined with a mixture modeling approach, provides a powerful and flexible tool to capture not only different types of variability—vehicle-to-vehicle and day-to-day variability—but also the unobserved heterogeneity within these variability types, thereby allowing the modeling of the underlying distributions of individual travel delays across different days with varying roadway disruption levels in a more effective and systematic way.  相似文献   

8.
Travel time reliability is considered to be one of the key indicators for the performance of transport systems and is measured in various ways. This paper synthesizes both reliability concepts: traffic breakdown, the indicator of the instability of travel times, is treated as the risk, whereas travel time variability, the indicator of the uncertainty of travel times, is considered as the consequence of this risk. An analytical formula, using risk assessment technique, explicitly expresses the cost of travel time unreliability as the sum of the products of the consequences (i.e. variability) and the corresponding probabilities of breakdown. It provides a novel measure of travel time reliability and is applicable in network performance evaluations. An empirical example based on a large dataset of freeway traffic flow data from loop detectors shows that the developed travel time reliability measure is both intuitively logical and consistent.  相似文献   

9.
This paper develops and applies a practical method to estimate the benefits of improved reliability of road networks. We present a general methodology to estimate the scheduling costs due to travel time variability for car travel. In contrast to existing practical methods, we explicitly consider the effect of travel time variability on departure time choices. We focus on situations when only mean delays are known, which is typically the case when standard transport models are used. We first show how travel time variability can be predicted from mean delays. We then estimate the scheduling costs of travellers, taking into account their optimal departure time choice given the estimated travel time variability. We illustrate the methodology for air passengers traveling by car to Amsterdam Schiphol Airport. We find that on average planned improvements in network reliability only lead to a small reduction in access costs per trip in absolute terms, mainly because most air passengers drive to the airport outside peak hours, when travel time variability tends to be low. However, in relative terms the reduction in access costs due to the improvements in network reliability is substantial. In our case we find that for every 1 Euro reduction in travel time costs, there is an additional cost reduction of 0.7 Euro due to lower travel time variability, and hence lower scheduling costs. Ignoring the benefits from improved reliability may therefore lead to a severe underestimation of the total benefits of infrastructure improvements.  相似文献   

10.
Accurate estimation of travel time is critical to the success of advanced traffic management systems and advanced traveler information systems. Travel time estimation also provides basic data support for travel time reliability research, which is being recognized as an important performance measure of the transportation system. This paper investigates a number of methods to address the three major issues associated with travel time estimation from point traffic detector data: data filling for missing or error data, speed transformation from time‐mean speed to space‐mean speed, and travel time estimation that converts the speeds recorded at detector locations to travel time along the highway segment. The case study results show that the spatial and temporal interpolation of missing data and the transformation to space‐mean speed improve the accuracy of the estimates of travel time. The results also indicate that the piecewise constant‐acceleration‐based method developed in this study and the average speed method produce better results than the other three methods proposed in previous studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Recent empirical studies on the value of time and reliability reveal that travel time variability plays an important role on travelers' route choice decision process. It can be considered as a risk to travelers making a trip. Therefore, travelers are not only interested in saving their travel time but also in reducing their risk. Typically, risk can be represented by two different aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability aspect of acceptable travel time, which is defined as the average travel time plus the acceptable additional time (or buffer time) needed to ensure more frequent on‐time arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late arrivals (though infrequent) that have a travel time excessively higher than the acceptable travel time. Most research in the network equilibrium based approach to modeling travel time variability ignores the unreliability aspect of unacceptable late arrivals. This paper examines the effects of both reliability and unreliability aspects in a network equilibrium framework. Specifically, the traditional user equilibrium model, the demand driven travel time reliability‐based user equilibrium model, and the α‐reliable mean‐excess travel time user equilibrium model are considered in the investigation under an uncertain environment due to stochastic travel demand. Numerical results are presented to examine how these models handle risk under travel time variability.  相似文献   

12.
The measurement of transportation system reliability has become one of the central topics of travel demand studies. A growing literature concerns the measurement of value of travel time reliability which provides a monetary cost of avoiding unpredictable travel time. The goal of this study is to measure commuters’ sensitivities to travel time reliability and their willingness to pay (WTP) to avoid unreliable routes. The preferences are elicited through a pivoted stated preference survey technique. To circumvent the issue of presenting numerical distributions and statistical terms to day-to-day commuters, we use the frequency of delay days as a means of measuring traveler’s sensitivities to travel time reliability. The advantage of using simplified measures to elicit traveler preferences for travel time reliability is that these methods simply compare days with high delay to days with usual travel time. It was found that travelers are not only averse to the amount of unexpected delay but also to the frequency of days with unexpected delays. The paper presents WTP findings for three measures: travel time, frequency embedded travel time, and travel time reliability. The ‘reliability’ increase in WTP for travel time is found to be nearly proportional to the frequency of experiencing unexpected delays. For example, the WTP for mean travel time is calculated at $6.98/h; however, reliability adds $3.27 (about 50 % of $6.98) to avoid unexpected delays ‘5 out of 10 days’. The results of the study would provide valuable inputs to cost-benefit analyses and traffic and revenue studies required for road tolling investment projects.  相似文献   

13.
Estimating the travel time reliability (TTR) of urban arterial is critical for real-time and reliable route guidance and provides theoretical bases and technical support for sophisticated traffic management and control. The state-of-art procedures for arterial TTR estimation usually assume that path travel time follows a certain distribution, with less consideration about segment correlations. However, the conventional approach is usually unrealistic because an important feature of urban arterial is the dependent structure of travel times on continuous segments. In this study, a copula-based approach that incorporates the stochastic characteristics of segments travel time is proposed to model arterial travel time distribution (TTD), which serves as a basis for TTR quantification. First, segments correlation is empirically analyzed and different types of copula models are examined. Then, fitting marginal distributions for segment TTD is conducted by parametric and non-parametric regression analysis, respectively. Based on the estimated parameters of the models, the best-fitting copula is determined in terms of the goodness-of-fit tests. Last, the model is examined at two study sites with AVI data and NGSIM trajectory data, respectively. The results of path TTD estimation demonstrate the advantage of the proposed copula-based approach, compared with the convolution model without capturing segments correlation and the empirical distribution fitting methods. Furthermore, when considering the segments correlation effect, it was found that the estimated path TTR is more accurate than that by the convolution model.  相似文献   

14.
15.
An assumption that pervades the current transportation system reliability assessment literature is that probability distributions of the sources of uncertainty are known explicitly. However, this distribution may be unavailable (inaccurate) in reality as we may have no (insufficient) data to calibrate the distribution. In this paper we relax this assumption and present a new method to assess travel time reliability that is distribution-free in the sense that the methodology only requires that the first N moments (where N is a user-specified positive integer) of the travel time to be known and that the travel times reside in a set of bounded and known intervals. Because of our modeling approach, all sources of uncertainty are automatically accounted for, as long as they are statistically independent. Instead of deriving exact probabilities on travel times exceeding certain thresholds via computationally intensive methods, we develop semi-analytical probability inequalities to quickly (i.e. within a fraction of a second) obtain upper bounds on the desired probability. Numerical experiments suggest that the inclusion of higher order moments can potentially significantly improve the bounds. The case study also demonstrates that the derived bounds are nontrivial for a large range of travel time values.  相似文献   

16.
As intelligent transportation systems (ITS) approach the realm of widespread deployment, there is an increasing need to robustly capture the variability of link travel time in real-time to generate reliable predictions of real-time traffic conditions. This study proposes an adaptive information fusion model to predict the short-term link travel time distribution by iteratively combining past information on link travel time on the current day with the real-time link travel time information available at discrete time points. The past link travel time information is represented as a discrete distribution. The real-time link travel time is represented as a range, and is characterized using information quality in terms of information accuracy and time delay. A nonlinear programming formulation is used to specify the adaptive information fusion model to update the short-term link travel time distribution by focusing on information quality. The model adapts good information by weighing it higher while shielding the effects of bad information by reducing its weight. Numerical experiments suggest that the proposed model adequately represents the short-term link travel time distribution in terms of accuracy and robustness, while ensuring consistency with ambient traffic flow conditions. Further, they illustrate that the mean of a representative short-term travel time distribution is not necessarily a good tracking indicator of the actual (ground truth) time-dependent travel time on that link. Parametric sensitivity analysis illustrates that information accuracy significantly influences the model, and dominates the effects of time delay and the consistency constraint parameter. The proposed information fusion model bridges key methodological gaps in the ITS deployment context related to information fusion and the need for short-term travel time distributions.  相似文献   

17.
Researchers have used multiday travel data sets recently to examine day-to-day variability in travel behavior. This work has shown that there is considerable day-to-day variation in individuals' urban travel behavior in terms of such indicators of behavior as trip frequency, trip chaining, departure time from home, and route choice. These previous studies have also shown that there are a number of important implications of the observed day-to-day variability in travel behavior. For example, it has been shown that it may be possible to improve model parameter estimation precision, without increasing the cost of data collection, by drawing a multiday sample (rather than a single day sample) of traveler behavior, if there is considerable day-to-day variability in the phenomenon being modeled. This paper examines day-to-day variability in urban travel using a three-day travel data set collected recently in Seattle, WA. This research replicates and extends previous work dealing with day-to-day variability in trip-making behavior that was conducted with data collected in Reading, England, in the early 1970s. The present research extends the earlier work by examining day-to-day variations in trip chaining and daily travel time in addition to the variation in trip generation rates. Further, the present paper examines day-to-day variations in travel across the members of two-person households. This paper finds considerable day-to-day variability in the trip frequency, trip chaining and daily travel time of the sample persons and concludes that, in terms of trip frequency, the level of day-to-day variability is very comparable to that observed previously with a data set collected almost 20 years earlier in Reading, England. The paper also finds that day-to-day variability in daily travel time is similar in magnitude to that in daily trip rates. The analysis shows that the level of day-to-day variability is about the same for home-based and non-homebased trips, thus indicating that day-to-day variability in total trip-making is attributable to variation in both home-based and non-home-based trips. Day-to-day variability in the travel behaviors of members of two-person households was also found to be substantial.  相似文献   

18.
Classically, one mean vehicle representative of each category is used by both static and dynamic traffic noise prediction models. The spectrum associated with this mean vehicle is determined from a linear statistical regression analysis based on measurement campaigns on a track or in situ. However, the variability of individual vehicle emissions can influence predictions and hinder comparison between static and dynamic models. In order to estimate the induced bias, statistical analysis of the distributions of sound power levels emitted by the individual passage of vehicles during 82 measurement campaigns was carried out. The results show that 92% of the residual regression distributions are Gaussian and that standard deviations can reach 3.6 dBA. The value of the proposed correction term for this case study could reach 1.4 dBA for light vehicles and 1.2 dBA for heavy vehicles. This analysis also shows that the variability in sound power levels and thus the corresponding corrections are higher at the lowest speeds that correspond to urban driving conditions.  相似文献   

19.
Most economic models assume that individuals act out their preferences based on self-interest alone. However, there have also been other paradigms in economics that aim to capture aspects of behavior that include fairness, reciprocity, and altruism. In this study we empirically examine preferences of travel time and income distributions with and without the respondent knowing their own position in each distribution. The data comes from a Stated Preference experiment where subjects were presented paired alternative distributions of travel time and income. The alternatives require a tradeoff between distributional concerns and the respondent’s own position. Choices also do not penalize or reward any particular choice. Overall, choices show individuals are willing forgo alternatives where they would be individually well off in the interest of distributional concerns in both the travel time and income cases. Exclusively self-interested choices are seen more in the income questions, where nearly 25 % of respondents express such preferences, than in the travel time case, where only 5 % of respondents make such choices. The results also suggest that respondents prioritize their own position differently relative to regional distributions of travel time and income. Estimated choice models show that when it comes to travel time, individuals are more concerned with societal average travel time followed by the standard deviation in the region and finally their own travel time, while in the case of income they are more concerned with their own income, followed by a desire for more variability, and finally increasing the minimum income in their region. When individuals do not know their fate after a policy change that affects regional travel time, their choices appear to be mainly motivated by risk averse behavior and aim to reduce variability in outcomes. On the other hand, in the income context, the expected value appears to drive choices. In all cases, population-wide tastes are also estimated and reported.  相似文献   

20.
The travel decisions made by road users are more affected by the traffic conditions when they travel than the current conditions. Thus, accurate prediction of traffic parameters for giving reliable information about the future state of traffic conditions is very important. Mainly, this is an essential component of many advanced traveller information systems coming under the intelligent transportation systems umbrella. In India, the automated traffic data collection is in the beginning stage, with many of the cities still struggling with database generation and processing, and hence, a less‐data‐demanding approach will be attractive for such applications, if it is not going to reduce the prediction accuracy to a great extent. The present study explores this area and tries to answer this question using automated data collected from field. A data‐driven technique, namely, artificial neural networks (ANN), which is shown to be a good tool for prediction problems, is taken as an example for data‐driven approach. Grey model, GM(1,1), which is also reported as a good prediction tool, is selected as the less‐data‐demanding approach. Volume, classified volume, average speed and classified speed at a particular location were selected for the prediction. The results showed comparable performance by both the methods. However, ANN required around seven times data compared with GM for comparable performance. Thus, considering the comparatively lesser input requirement of GM, it can be considered over ANN in situations where the historic database is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号