首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过仿真分析计算,在不同工况条件下模拟地基沉降,对路桥过渡段刚性楔形搭板与路基的完全弹性支承、部分脱空和完全脱空时的接触状态进行力学分析。分析刚性楔形搭板与路基不同接触状态时的受力状态及其对地基沉降的适应性,提出刚性楔形搭板脱空长度是影响其受力状态的主要因素;刚性楔形搭板桥台端应力集中明显,应做特殊强化设计;地基沉降是影响路基面折角的主要因素;为使轨道刚度和路基变形均匀变化,建议采用工况1的计算参数。  相似文献   

2.
针对路桥过渡段的不均匀沉降问题,通过建立轨道路基分析模型,结合大型商业软件ANSYS的APDL语言,应用迭代接触算法和单元生死技术模拟搭板与填土之间接触和脱空的不同受力状态;并基于地基均匀沉降和不均匀沉降两种模式,考虑搭板受力与变形的耦合,分析了搭板的受力特性与适应性。受力特性分析表明:随着脱空区长度的增加,搭板及轨道板板底纵向应力增加;板底最大纵向应力的载荷位置在桥台与1/2倍板长之间,且随着脱空区长度的增加,最不利载荷位置与桥台的距离增加;搭板发生完全脱空时,板长且厚的搭板的底部纵向应力比板短而薄的大。适应性分析表明:长度为6 m的搭板适用于处理地基沉降在5mm以内的桥头路段;长度为8 m的搭板适用于处理地基沉降在10 mm以内的桥头路段;长度为10 m的搭板适用于处理地基沉降在15 mm以内的桥头路段。  相似文献   

3.
应用有限元方法建立土质路基上CRTS III型板式无砟轨道系统空间耦合模型,研究路基不均匀沉降作用下板式轨道的受力和变形特性,以及路基发生不均匀沉降时底座板和路基表层之间接触应力和脱空区域的变化规律。结果表明:路基发生不均匀沉降时,无砟轨道结构在重力作用下会发生跟随性变形;轨道板、自密实混凝土和底座板在路基沉降作用下的应力受路基沉降波长和幅值的综合影响,路基沉降幅值越大,轨道各层受力越大,波长为20~30 m的路基沉降对轨道应力的影响较大;底座板和路基表层间的接触应力和脱空区域随着路基沉降幅值的增大而增大,随着路基沉降波长的增大出现先增大后减小的变化趋势。由此可见,路基不均匀沉降会对轨道结构的受力和变形产生明显影响,严重时会造成轨道脱空,对行车安全舒适性产生较大影响,应加以严格控制。  相似文献   

4.
无砟轨道桩板结构路基设计计算   总被引:1,自引:0,他引:1  
鉴于无砟轨道桩板结构路基没有相应的设计规范,在分析其结构特点和使用要求的基础上,借鉴相关行业标准和研究成果,将荷载分为永久荷载、可变荷载和偶然荷载,提出按承载能力极限状态和正常使用极限状态分别进行荷载效应组合,取各自的最不利组合以分项系数形式的表达式进行桩板结构路基设计计算。对荷载分项系数、组合值系数、准永久值系数以及结构抗力设计值和正常使用规定限值提出建议值。建议:承载板长度宜取20~50 m、厚度宜取0.5~0.8 m,并按一定原则设置;桩间距纵向宜取5~10 m,横向宜与线间距相对应;设置过渡段以满足过渡衔接处差异沉降和竖向转角要求。  相似文献   

5.
结合深圳市一实际工程,采用数值模拟方法,研究基坑被动区软土层加固宽度对基坑桩锚(撑)支护结构的影响规律。结果表明:坑底被动区加固对减小围护桩变形、受力及坑外地表沉降有效;同时坑底被动区软土层加固存在最优加固宽度,在加固宽度大于最优加固宽度时,围护桩变形、受力及坑外地表沉降基本处于稳定状态;考虑安全、经济等多方面的因素,在以减小围护结构变形、内力和地面沉降为主要目标时,建议基坑被动区软土层最优加固宽度取坑底软土层厚度的3~4倍。  相似文献   

6.
路基不均匀沉降分为正(余)弦型、错台型和折角型,对无砟轨道的影响主要考虑线路纵向正(余)弦型不平顺。应用有限元法计算路基不均匀沉降对轨道结构的影响,采用弹性地基上的梁板计算模型和叠合梁计算模型计算基础变形的无砟轨道荷载弯矩,并进行比较分析,两种模型的计算结果吻合较好。路基不均匀沉降对双块式无砟轨道结构的受力影响较大,建议对双块式无砟轨道变形特别是因线下工程沉降引起的永久变形制定控制标准,设计和检算考虑路基不均匀沉降对轨道结构的影响。  相似文献   

7.
针对桥头跳车现象,利用有限元数值分析方法,对由土工格室加筋构成的柔性搭板处治桥头跳车进行了技术研究。通过分析路基填料类型,土工格室柔性搭板长度、土工格室高度、土工格室搭板层数、竖向间距等工程因素对路基沉降的影响,得出了一些有指导意义的设计参数。现场试验表明,土工格室柔性搭板能较好地协调桥台和路堤的沉降差,防治桥头跳车病害的发生。  相似文献   

8.
高速铁路CFG桩桩板复合地基工后沉降数值模拟   总被引:10,自引:5,他引:5  
基于典型段体积元,建立三维有限元模型,通过数值模拟计算分析高速铁路CFG桩桩板复合地基工后沉降(简称"工后沉降")及其影响参数。结果表明:桩底部处有明显的下刺入现象,桩顶由于褥垫层较薄且其模量较大而使刺入不明显;桩长的增加可以有效减小工后沉降,它是决定工后沉降大小的主要参数之一;当桩体模量达到10 GPa时,若再继续增大,对工后沉降的影响不大;在3-6倍桩径范围内,桩体间距宜取较大值作为设计桩体间距,在此设计间距范围内工后沉降变化不大,且方便施工,节约造价;一定厚度(0.2-0.4 m)和模量(120-200 MPa)的褥垫层可以有效调节桩体的刺入现象,减小工后沉降的发生;钢筋混凝土板模量对工后沉降的影响与桩体模量相同,其厚度不宜小于0.4 m;路堤高度不是决定工后沉降的主要参数。  相似文献   

9.
无砟轨道跨涵洞桩板结构路基及过渡段设计   总被引:2,自引:2,他引:0  
结合遂渝线无砟轨道路基综合试验段,以桩板结构路基段为研究对象,根据无砟轨道桩板结构路基段所经不同地形,在分析其结构特点和使用要求基础之上,研究了桩板结构路基、跨涵桩板结构路基及桩板结构路基过渡段的设计方法及理论,最终通过桩板结构路基强度、稳定与变形检测,进一步评价无砟轨道桩板结构路基的适用性。结果表明,桩板结构路基承载板长度以20~50m为宜,板与板之间设置宽度为2cm伸缩缝,设伸缩缝处的板与桩通过设置承台进行连接;对跨涵桩板结构特殊路段采用不等跨纵向桩间距方法(一般桩板结构路基纵向间距采用5.0~7.5m,跨涵工点采用10.0m)均满足铺设无砟轨道横向及竖向位移的设计要求;桩板结构路基过渡段采用搭板连接,进一步提高了桩板结构路基的抗裂性能。  相似文献   

10.
CRTS-Ⅰ型板式无砟轨道线路路基不均匀沉降限值研究   总被引:3,自引:0,他引:3  
基于列车—轨道耦合动力学理论,考虑无砟轨道各部件间及无砟轨道与路基间接触状态非线性,建立列车—板式无砟轨道—路基三维非线性有限元耦合动力学模型,进行自重荷载、轨道中长波随机不平顺、轨道短波随机不平顺、路基不均匀沉降荷载、无砟轨道板温度梯度荷载共同作用下,高速铁路CRTS-Ⅰ型板式无砟轨道路基不均匀沉降限值研究。结果表明:无砟轨道板温度梯度荷载对无砟轨道各部件受力均有较明显的影响,因此在进行无砟轨道线路路基不均匀沉降限值研究时有必要同时考虑无砟轨道板温度梯度荷载的影响;路基上CRTS-Ⅰ型板式无砟轨道线路的路基不均匀沉降限值由底座板疲劳破坏控制,路基不均匀沉降幅值达到7mm时无砟轨道底座板的最大拉力达到疲劳破坏限值1.674MPa,因此建议高速铁路CRTS-Ⅰ型板式无砟轨道路基的不均匀沉降限值为7mm/20m。  相似文献   

11.
为了从细观力学机理上研究路桥过渡段的劣化规律及其影响因素,采用离散单元 (DEM) 法生成轨枕与道砟模型,并施加相位荷载,通过多体动力学 (MBD) 方法建立相互独立的路基弹簧,实现对路桥过渡段中路基刚度变化的模拟,进而建立轨枕-道砟-路基过渡段耦合模型,进行不同路基刚度、列车速度、轴重以及桩基加固下过渡段不均匀沉降研究。结果表明:列车荷载作用下,路桥过渡段中过渡路基区沉降最大,普通路基区次之,桥面路基区最小;当列车车速由 94 km·h-1增加至 281 km·h-1、轴重由 16 t 提升至 32 t 时,过渡段不均匀沉降分别增大 60.9% 和 259.4%,轴重的影响更为突出;当列车车速为 94 km·h-1和轴重为 16 t 时,采用刚度渐变路基或桩基加固软路基措施后,过渡段各路基区沉降均有减小,过渡段不均匀沉降分别减小 56.5% 和53.6%,验证了路桥过渡段采用搭板法与桩基加固法的合理性。  相似文献   

12.
以连(云港)镇(江)铁路五峰山长江大桥为工程背景,基于有限元分析,研究该桥在基础不均匀沉降、温度荷载、风荷载、竖向活载及制动力作用下的梁端变位特征及荷载组合效应。结果表明:梁端纵向位移主要影响因素为温度荷载和竖向活载,其次为纵向风荷载、基础沉降和列车制动力;梁端竖向转角受竖向活载和基础不均匀沉降影响最大;横向极限风荷载和温度荷载对梁端横向位移和转角存在一定影响;主、引桥之间的横向位移差引起梁端横向折角。除考虑梁端纵向位移和竖向转角外,铁路悬索桥在设计时也应关注梁端横向位移和横向折角,可通过结构约束体系、端横梁局部合理设计及主、引桥支座位置优化等措施满足梁端空间变位要求,从而为大位移梁端伸缩装置的设计和梁端区域行车的安全平稳提供有利条件。  相似文献   

13.
张然 《铁道建筑》2020,(2):91-94
依托宝兰客运专线路基的地基处理工程,研究深厚层强湿陷性黄土地基处理新技术。对刚柔性组合桩复合地基在湿陷性黄土地区的应用进行深入研究,首次提出了地基处理设计中工后沉降的计算方法。研究结果表明:在深厚层湿陷性黄土地基处理时,柔性短桩长度宜控制在5~10 m;当路基荷载超过200 kPa(路基填高超过8 m)时,应适当增加刚性桩的桩土应力比值,以提高刚性桩荷载分担比,充分发挥长桩的作用。宝兰客运专线自开通运营以来,刚柔性组合桩复合地基段路基状况良好,列车运行平稳。  相似文献   

14.
为确保既有结构在隧道下穿施工中的安全,以北京地铁19号线四线隧道密贴下穿既有4号线新宫站工程为背景,通过现场监测和数值模拟,分析既有结构在不同导洞开挖顺序、开挖进尺、掌子面错距、临时支护拆除长度等工况下的沉降变形特征。研究结果表明:(1)导洞开挖顺序为"先上后下、先边后中"引起的既有结构沉降变形最小;(2)其他条件一定时,既有结构沉降随着开挖进尺的增大而增大,本项目开挖进尺取2 m为宜;(3)其他条件一定时,既有结构沉降随着掌子面错距的增大而减小并最终趋于稳定,本项目掌子面错距取6 m为宜;(4)其他条件一定时,既有结构沉降随着临时支护单次拆除长度的增大而增大,本项目临时支护单次拆除长度取6 m为宜;(5)既有站东西两侧布设围护桩可以有效控制既有结构沉降。  相似文献   

15.
为了解决低墩桥梁造价高,传统路基填料耗费多、占地面积大等难题,提出新型“箱式路基”结构。然而在高速铁路运营过程中地基不可避免会发生不均匀沉降,影响箱式路基服役性能和列车的安全运行。为确定新型箱式路基结构的沉降限值,从轨道结构受力变形和列车走行性2方面研究了地基沉降对箱式路基静、动力学特性的影响。考虑有砟和无砟2种轨道形式,根据箱式路基结构特点确定了错台、折角、对折和横向错位4种沉降类型;通过建立轨道-箱式路基非线性有限元模型,分析了不同沉降类型和沉降幅值下的扣件竖向力和10 m弦长矢度值;建立列车-轨道-箱式路基耦合动力学模型,采用联合仿真方法分析了不同沉降类型、不同沉降幅值和不同行车速度下的列车动力响应;综合静力、动力计算结果并结合规范得出了箱式路基沉降限值。研究结果表明,对于有砟轨道-箱式路基结构,除350 km/h错台沉降工况下的沉降限值由动力指标中的轮重减载率控制外,其他工况下的沉降限值均由静力指标中的10 m弦长矢度值控制;对于无砟轨道-箱式路基结构,其沉降限值不受动力指标控制,错台、横向错位沉降限值由扣件竖向力控制,折角、对折沉降限值由10 m弦长矢度值控制。有砟轨道-箱式...  相似文献   

16.
轨道交通橡胶浮置板式轨道结构动力设计参数研究   总被引:3,自引:0,他引:3  
利用车辆多刚体动力学与浮置板轨道段组合单元的车轨系统竖向振动分析模型,研究车辆移动荷载作用下浮置板厚度、轨下扣件刚度、橡胶支座刚度对轨道结构竖向振动的影响.在此基础上,提出浮置板厚度、轨下扣件刚度、橡胶支座刚度的合理取值范围.研究结果表明:随着浮置板的厚度增加,浮置板的位移和加速度呈下降趋势,橡胶支座反力则增大,但对钢轨的影响不大,浮置板厚度应取为0.3~0.5 m较合适;轨下扣件刚度对钢轨和轮轨竖向作用力影响较大,对浮置板影响很小,轨下扣件刚度应取较小值,以40 MN/m为宜;橡胶支座刚度对浮置板和钢轨的动力学响应及橡胶支座反力和轮轨竖向作用力都有很大影响,橡胶支座刚度应优选20 MN/m左右较合理.  相似文献   

17.
王威 《铁道建筑》2023,(9):85-90
成都市轨道交通17号线二期工程阳公桥站—龙爪堰站区间隧道上跨既有7号线盾构隧道采用交叉中隔壁法施工。通过数值仿真结合现场监测,分析大断面隧道以小净距上跨施工时既有隧道拱顶隆起与地表沉降的变化规律,并通过分析新建隧道初期支护厚度、钢拱架间距、单次拆撑长度对既有隧道拱顶隆起和地表沉降的影响,对原施工方案进行了优化。结果表明:先行开挖的两个导洞施工对既有隧道拱顶隆起与地表沉降影响明显;既有隧道拱顶隆起与地表沉降随钢拱架间距和单次拆撑长度增大而增大,随初期支护厚度增加而减小。建议新建隧道上跨施工时采用初期支护+二次衬砌+三次衬砌的复合衬砌结构,钢拱架间距取0.4 m,单次拆撑长度取6 m。  相似文献   

18.
针对太原市汾河地区河漫滩地层,以双塔西街站深基坑为研究对象,利用有限差分软件FLAC 3D对开挖过程中基坑的变形规律进行了研究。结果表明:地表沉降整体呈凹槽型,最大沉降发生在距离基坑边缘0.5~0.6倍基坑深度处,影响范围为3倍基坑深度;河漫滩地区适于将插入比控制在0.9左右。根据正交试验,双塔西街站施工时支护参数宜采用插入比1.0,地下连续墙厚度1 000 mm,内支撑纵向间距6 m。  相似文献   

19.
研究目的:针对土路基上无砟轨道的特点,采用有限元分析理论,建立土路基上板式无砟轨道结构的有限元分析模型,对土路基上板式轨道结构的合理型式进行研究,并分析底座尺寸改变对土路基上轨道结构力学性能的影响,以期研究结论可为土路基上无砟轨道结构的铺设及相关设计研究提供参考。研究结论:(1)相比实体板,框架板可有效减小轨道板在荷载作用下的应力和位移,其中最大拉应力减小约16%,最大位移减小约11%,同时自重减轻约30%,在土路基上铺设框架型轨道结构具有较高的技术经济性;(2)框架板式轨道结构的受力受底座厚度的影响更明显,受底座宽度的影响甚微;(3)底座尺寸的改变不影响框架型轨道板的应力分布规律;(4)土路基上框架型板式无砟轨道结构建议底座宽度取值为300~320 cm,厚度则取为30 cm左右,且不必为减小结构的受力而刻意的增大底座尺寸;(5)该研究成果可为无砟轨道的设计、维修更换提供理论依据。  相似文献   

20.
不均匀沉降对无砟轨道路基动力特性的影响   总被引:3,自引:3,他引:0  
为探讨不均匀沉降对高速铁路无砟轨道路基动力特性的影响,建立CRTSⅡ型板式无砟轨道-路基系统的三维动力有限元模型,计算并对比分析有病害和无病害条件下路基的竖向动应力、动位移及振动加速度在空间上的分布规律,结果表明路基不均匀沉降导致无砟轨道路基的动力响应幅值及其空间分布规律发生明显的改变,且主要集中在支承层宽度范围、路基面以下0~1.5m深度内。由不均匀沉降引起路基动应力幅值可达100kPa,为无病害路基的3倍以上,动加速度幅值为无病害路基的2倍以上,在列车循环荷载作用下沉降区域将加速扩大,对路基产生非常不利的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号