首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capturing the dynamics in passenger flow and system utilization over time and space is extremely important for railway operators. Previous studies usually estimated passenger flow using automatic fare collection data, and their applications are limited to a single stopping pattern and/or a single type of ticket. However, the conventional railway in Taiwan provides four types of ticket and five types of train service with a number of stopping patterns. This study develops a comprehensive framework and corresponding algorithms to map passenger flow and evaluate system utilization. A multinomial logit model is constructed and incorporated in the algorithms to estimate passenger train selection behavior. Results from the empirical studies demonstrate that the developed framework and algorithms can successfully match passengers with train services. With this tool, operators can efficiently examine passenger flow and service utilization, thereby quickly adjusting their service strategies accordingly to improve system performance.  相似文献   

2.
Many public transport operators are faced with high peak demands. This leads to crowded vehicles and discomfort for the passengers. The increasing availability of information technologies creates new opportunities for passengers to avoid crowding and for operators to inform passengers and reallocate capacities quicker than before. We define and implement a simple model based on minority games, a class of games that deals with crowding dynamics, adapted to a public transport setting.We propose a model which includes multiple resources and heterogeneous passenger preferences. We have conducted two simulation studies, investigating the dynamics of crowding within a simplified public transport setting. In our first experiment we investigate the effect of the availability of information on crowding. In our second experiment we study dynamic optimization of rolling stock capacities. We find that both the information disclosed and the capacity optimization mechanism have an impact on the number of passengers utilizing resources and their satisfaction. As such, these models enable the development and analysis of new operator policies to deal with crowded situations.  相似文献   

3.
Conventional and flexible bus services may be combined to better serve regions with a wide range of characteristics. If demand densities and resulting service frequencies are low, the coordination of bus arrivals at transfer stations may significantly reduce passenger transfer times. A method is proposed for integrating, coordinating, and optimizing bus services while considering many‐to‐many travel patterns, demand elasticity, financial constraints, and appropriate service type for various regions. The objective is to maximize welfare, that is, the sum of producer and consumer surplus. The problem is solved with a hybrid optimization method, in which a genetic algorithm with bounded integer variables is selected for solving one of the subproblems. The service types, fares, headways, and service zone sizes are jointly optimized. Sensitivity analyses explore how the choice among conventional and flexible busses depends on the demand, subsidy, and demand elasticity parameters. The results also show that welfare can increase due to coordination, and these increases are found to be higher in cases with high demand or low subsidy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
When public transport is the main means of travel in urban areas, management and planning are easy and the main objective can be to minimise costs for the demand available, i.e. maximise profit. However when public transport faces competition from other modes of transport, and activities can be undertaken in a variety of locations, then the management and planning of public transport services is considerably more difficult.This paper examines a methodology for representing consumer behaviour when faced with alternative travel decisions, in order to identify the demand for public transport and to help operators adjust services and prices to maximise demand, when considering people's disposable income, the alternative modes and activity locations available. From this it is possible to devise criteria for maximising consumer surplus in a city, taking into account social benefits.  相似文献   

5.
Yang  Hai  Lau  Yan Wing  Wong  Sze Chun  Lo  Hong Kam 《Transportation》2000,27(3):317-340
In most urban areas taxi services are subject to various types of regulation such as entry restriction and price control. However, effective intervention depends on generating and using suitable information on the demand-supply equilibrium of the taxi market. This paper develops a simultaneous equation system of passenger demand, taxi utilization and level of services based on a taxi service situation found in the urban area of Hong Kong over the last ten years. A set of variables is introduced including number of licensed taxis, taxi fare, disposable income, occupied taxi journey time as exogenous variables and daily taxi passenger demand, passenger waiting time, taxi availability, taxi utilization and average taxi waiting time as endogenous variables. These variables are coupled together through a system of nonlinear simultaneous equations whose parameters are estimated from survey data. The simultaneous equation system can be used to obtain useful regulatory information to assist with the decisions concerning the restriction over the number of taxi licenses and the fixing of the taxi fare structure as well as a range of service quality control. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
This paper develops a mathematical model that is based on the absorbing Markov chain approach to describe taxi movements, taking into account the stochastic searching processes of taxis in a network. The local searching behavior of taxis is specified by a logit form, and the O‐D demand of passengers is estimated as a logit model with a choice of taxi meeting point. The relationship between customer and taxi waiting times is modeled by a double‐ended queuing system. The problem is solved with a set of non‐linear equations, and some interesting results are presented. The research provides a novel and potentially useful formulation for describing the urban taxi services in a network.  相似文献   

7.
This paper introduces the taxi route network design problem (TXRNDP) for a fixed‐route taxi service operating in Iran and, in similar form, in various other developing countries. The service operates fairly similar to regular transit services in that vehicles are only permitted to follow a certain predetermined route on the network. The service is provided with small size vehicles and main features are that vehicles only depart if full and that there are no intermediate boarding stops. In Iran the service attracts a high modal share but requires better coordination which is the main motivation for the present study. We develop a mathematical programming model to minimize the total travel time experienced by passengers while constraining the number of taxi lines, the trip transfer ratio and the length of taxi lines. A number of assumptions are introduced in order to allow finding an exact rather than heuristic solution. We further develop a linear programming solution to minimize the number of taxis required to serve the previously found fixed‐route taxi network. Results of a case study with the city of Zanjan, Iran, illustrate the resulting taxi flows and suggest the capability of the proposed model to reduce the total travel time, the total waiting time and the number of taxi lines compared to the current taxi operation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Taxis are increasingly becoming a prominent mobility mode in many major cities due to their accessibility and convenience. The growing number of taxi trips and the increasing contribution of taxis to traffic congestion are cause for concern when vacant taxis are not distributed optimally within the city and are unable to find unserved passengers effectively. A way of improving taxi operations is to deploy a taxi dispatch system that matches the vacant taxis and waiting passengers while considering the search friction dynamics. This paper presents a network-scale taxi dispatch model that takes into account the interrelated impact of normal traffic flows and taxi dynamics while optimizing for an effective dispatching system. The proposed model builds on the concept of the macroscopic fundamental diagram (MFD) to represent the dynamic evolution of traffic conditions. The model considers multiple taxi service firms operating in a heterogeneously congested city, where the city is assumed to be partitioned into multiple regions each represented with a well-defined MFD. A model predictive control approach is devised to control the taxi dispatch system. The results show that lack of the taxi dispatching system leads to severe accumulation of unserved taxi passengers and vacant taxis in different regions whereas the dispatch system improves the taxi service performance and reduces traffic congestion by regulating the network towards the undersaturated condition. The proposed framework demonstrates sound potential management schemes for emerging mobility solutions such as fleet of automated vehicles and demand-responsive transit services.  相似文献   

9.
On-demand transport services in the form of dial-a-ride and taxis are crucial parts of the transport infrastructure in all major cities. However, not all on-demand transport services are equal: not-for-profit dial-a-ride services with coordinated drivers significantly differ from profit-motivated taxi services with uncoordinated drivers. In fact, there are two key threads of work on efficient scheduling, routing, and pricing for passengers: dial-a-ride services; and taxi services. Unfortunately, there has been only limited development of algorithms for joint optimization of scheduling, routing, and pricing; largely due to the widespread assumption of fixed pricing. In this paper, we introduce another thread: profit-motivated on-demand transport services with coordinated drivers. To maximize provider profits and the efficiency of the service, we propose a new market mechanism for this new thread of on-demand transport services, where passengers negotiate with the service provider. In contrast to previous work, our mechanism jointly optimizes scheduling, routing, and pricing. Ultimately, we demonstrate that our approach can lead to higher profits and reduced passenger prices, compared with standard fixed price approaches, while also improving efficiency.  相似文献   

10.
It has been frequently noted that in a non-regulated environment the development of public transport service is self-adjusting: Faced with decreasing demand, operators will tend to reduce service to cut costs, resulting in a decrease in the level-of-service, which then triggers a further drop in demand. The opposite may also occur: high demand will induce the operator to increase supply, e.g. through an increase in frequency, which results in a higher level-of-service and a subsequent increase in passenger numbers, triggering another round of service improvements. This paper adds to the literature by presenting an analytic model for analyzing these phenomena that we call vicious and virtuous cycles. Based on field data regarding passengers’ variation in willingness-to-wait for a public transport service, we investigate the dynamics of the line service and show how the emergence of a vicious or virtuous cycle depends on the total number of potential passengers, the share of captive riders, and bus capacity. The paper ends with a discussion of the implications of the findings for the planning of public transport services.  相似文献   

11.
This study evaluates an existing bus network from the perspectives of passengers, operators, and overall system efficiency using the output of a previously developed transportation network optimisation model. This model is formulated as a bi-level optimisation problem with a transit assignment model as the lower problem. The upper problem is also formulated as bi-level optimisation problem to minimise costs for both passengers and operators, making it possible to evaluate the effects of reducing operator cost against passenger cost. A case study based on demand data for Hiroshima City confirms that the current bus network is close to the Pareto front, if the total costs to both passengers and operators are adopted as objective functions. However, the sensitivity analysis with regard to the OD pattern fluctuation indicates that passenger and operator costs in the current network are not always close to the Pareto front. Finally, the results suggests that, regardless of OD pattern fluctuation, reducing operator costs will increase passenger cost and increase inequity in service levels among passengers.  相似文献   

12.
Recently, electric vehicles are gaining importance which helps to reduce dependency on oil, increases energy efficiency of transportation, reduces carbon emissions and noise, and avoids tail pipe emissions. Because of short daily driving distances, high mileage, and intermediate waiting time, fossil-fuelled taxi vehicles are ideal candidates for being replaced by battery electric vehicles (BEVs). Moreover, taxi BEVs would increase visibility of electric mobility and therefore encourage others to purchase an electric vehicle. Prior to replacing conventional taxis with BEVs, a suitable charging infrastructure has to be established. This infrastructure consists of a sufficiently dense network of charging stations taking into account the lower driving ranges of BEVs.In this case study we propose a decision support system for placing charging stations in order to satisfy the charging demand of electric taxi vehicles. Operational taxi data from about 800 vehicles is used to identify and estimate the charging demand for electric taxis based on frequent origins and destinations of trips. Next, a variant of the maximal covering location problem is formulated and solved to satisfy as much charging demand as possible with a limited number of charging stations. Already existing fast charging locations are considered in the optimization problem. In this work, we focus on finding regions in which charging stations should be placed rather than exact locations. The exact location within an area is identified in a post-optimization phase (e.g., by authorities), where environmental conditions are considered, e.g., the capacity of the power network, availability of space, and legal issues.Our approach is implemented in the city of Vienna, Austria, in the course of an applied research project that has been conducted in 2014. Local authorities, power network operators, representatives of taxi driver guilds as well as a radio taxi provider participated in the project and identified exact locations for charging stations based on our decision support system.  相似文献   

13.
ABSTRACT

Airport terminals are dynamic environments and security/passport services generally constitute costly bottlenecks in terminals. Increases in the number of airline passengers compels airport terminals to provide more efficient services to its customers under space and resource limitations. This study examines the level of service of passenger processes at Istanbul Atatürk Airport by constructing a comprehensive simulation model. It focuses mainly on passport control services and passenger transfer security services because of the airport's hub status and the strategy of Turkish Airlines. The increasing number of transfer passengers may cause disruptions in departure flight schedules due to slow passenger processes. After validating the model, we investigate the consequences of three main alternative solutions, including 17 sub-scenarios, to capture target quality levels. Finally, we provide the results for each scenario to investigate the optimum allocation of resources to terminal operations.  相似文献   

14.
This paper addresses the impacts of different scheduling alternatives for a branching transit route. It examines different schedule alternatives that might be used to optimize the route performance in terms of the passenger traveling time distributed among branch passengers and trunk‐line passengers. The schedule alternatives considered include transit vehicle allocation to different branches, offset shifting across vehicles on different branches, and vehicle holding (slack time) in the transit vehicle schedule. With these variables, several vehicle schedules are devised and examined based on a wide variety of possible passenger boarding scenarios using deterministic service models. Test outcomes provide general conclusions about the performance of the strategies. Vehicle assignment leading to even headways among branches is generally preferred for the case of low passenger demand. However, when passenger demand is high, or the differences between the passenger demands on branches are significant, unequal vehicle assignment will be helpful to improve the overall route performance. Holding, as a proactive strategy in scheduling, has the potential to be embedded into the schedule as a type of slack time, but needs further evidence and study to determine the full set of conditions where it may be beneficial. Offset shifting does not show sufficient evidence to be an efficient strategy to improve route performance in the case of low or high passenger demand.  相似文献   

15.
Bus rapid transit system is designed to provide high‐quality and cost‐efficient passenger transportation services. In order to achieve this design objective, effective scheduling strategies are required. This research aims at improving the operation efficiency and service quality of a BRT system through integrated optimization of its service headways and stop‐skipping strategy. Based on cost analysis for both passengers and operation agencies, an optimization model is established. A genetic algorithms based algorithm and an application‐oriented solution method are developed. Beijing BRT Line 2 has been chosen as a case study, and the effectiveness of the optimal headways with stop‐skipping services under different demand levels has been analyzed. The results has shown that, at a certain demand level, the proposed operating strategy can be most advantageous for passengers with an accepted increase of operating costs, under which the optimum headway is between 3.5 and 5.5 min for stop‐skipping services during the morning peak hour depending on the demand with the provision of stop‐skipping services. The effectiveness of the optimal headways with stop‐skipping services is compared with those of existing headways and optimal headways without stop‐skipping services. The results show that operating strategies under the optimal headways with stop‐skipping services outperforms the other two operating strategies with respect to total costs and in‐vehicle time for passengers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Many transit systems outside North America are characterized by networks with extensively overlapping routes and buses frequently operating at, or close to, capacity. This paper addresses the problem of allocating a fleet of buses between routes in this type of system; a problem that must be solved recurrently by transit planners. A formulation of the problem is developed which recognizes passenger route choice behavior, and seeks to minimize a function of passenger wait time and bus crowding subject to constraints on the number of buses available and the provision of enough capacity on each route to carry all passengers who would select it. An algorithm is developed based on the decomposition of the problem into base allocation and surplus allocation components. The base allocation identifies a feasible solution using an (approx.) minimum number of buses. The surplus allocation is illustrated for the simple objective of minimizing the maximum crowding level on any route. The bus allocation procedure developed in this paper has been applied to part of the Cairo bus system in a completely manual procedure, and is proposed to be the central element of a short-range bus service planning process for that city.  相似文献   

17.
The capacity of 35 Brazilian domestic airports was analyzed with a view to determining which of them were efficient in terms of the number of passengers processed. Data Envelopment Analysis (DEA) methodology was employed to construct the efficient frontier for the sample, to reflect which of the airports used airport resources efficiently and which offered surplus in these same facilities, and in what proportion. On the basis of passenger demand forecasts, it was possible to determine, for each airport, the periods when capacity expansions would become necessary to maintain services at standards currently perceived by passengers.  相似文献   

18.
Changing market regulations in South Korea have allowed diesel-fueled passenger cars in the domestic market. The diffusion of diesel cars is tied to issues of environmental impact, energy supply and demand, and changes in tax revenue. Policymakers can influence demand for diesel vehicles to protect social welfare and to observe international environmental protection laws. On the supply side, carmakers need to know consumer preferences regarding new vehicles to arrive at development strategies.This study uses microsimulated demand forecasting to address these issues and predict consumer demand for diesel passenger cars. The model accommodates governmental policies and car attributes such as price and engine efficiency. We find that consumers will likely prefer diesel passenger cars to gasoline ones due to the low operation costs of the former in spite of high purchase price when diesel is relatively cheaper than gasoline. Finally we find that diesel passenger cars will capture a 42% market penetration ratio under the pricing system suggested by the Ministry of Environment of Korea.  相似文献   

19.
This work is originally motived by the re-planning of a bus network timetable. The existing timetable with even headways for the network is generated using line by line timetabling approach without considering the interactions between lines. Decision-makers (i.e., schedulers) intend to synchronize vehicle timetable of lines at transfer nodes to facilitate passenger transfers while being concerned with the impacts of re-designed timetable on the regularity of existing timetable and the accustomed trip plans of passengers. Regarding this situation, we investigate a multi-objective re-synchronizing of bus timetable (MSBT) problem, which is characterized by headway-sensitive passenger demand, uneven headways, service regularity, flexible synchronization and involvement of existing bus timetable. A multi-objective optimization model for the MSBT is proposed to make a trade-off between the total number of passengers benefited by smooth transfers and the maximal deviation from the departure times of the existing timetable. By clarifying the mathematical properties and solution space of the model, we prove that the MSBT problem is NP-hard, and its Pareto-optimal front is non-convex. Therefore, we design a non-dominated sorting genetic (NSGA-II) based algorithm to solve this problem. Numerical experiments show that the designed algorithm, compared with enumeration method, can generate high-quality Pareto solutions within reasonable times. We also find that the timetable allowing larger flexibility of headways can obtain more and better Pareto-optimal solutions, which can provide decision-makers more choice.  相似文献   

20.
The Taiwan High Speed Rail (THSR) has recently added three additional stations to its original network. Although the three additional stations can improve accessibility to the system, these new stations can present difficulties in the transportation planning process, particularly for planning of train stops. The additional stations may benefit some passengers, but may also lengthen the travel time for the other passengers. Therefore, the main challenge faced by THSR is finding an efficient way to design appropriate stopping patterns. Past studies on stop planning usually adopted meta‐heuristics or decomposition methods to solve this complex problem. Although these solution techniques can improve solution efficiency, none of them can guarantee the optimality of the solution and capture the transfer movement of different stopping patterns. In this research, we proposed an innovative network structure to address complex stop planning problems for high‐speed rail systems. Given its special network structure, two binary integer programming models were developed to simultaneously form and determine the optimal stopping patterns for real‐world THSR stop planning problems. An optimization process was also developed to accurately estimate the station transfer time corresponding to the variation in stopping patterns and passenger flow. Results of the case studies suggest that the proposed binary integer programming models exhibit superior solution quality and efficiency over existing exact optimization models. Consequently, using this stop planning optimization process can help high‐speed rail system planners in designing optimal stopping patterns that correspond to passenger demand. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号