首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This paper investigates a strategic signal control, which anticipates travelers' route choice response and determines signal timings to optimize network‐wide objectives. In general traffic assignment models are used for anticipating this route choice response. However, model‐reality mismatch usually brings suboptimal solutions to the real system. A repeated anticipatory control resolves the suboptimality and addresses the modeling error by learning from information on model bias. This paper extends the repeated control approach and focuses on the estimation of flow sensitivity as well as its influence on control, which is a crucial issue in implementation of model bias correction. The main objective of this paper is first to analyze the estimation error in the real flow derivative that is estimated from noisy measurements. A dual control method is then presented, improving both optimization objective function and derivative estimation during the control process. The proposed dual algorithm is tested on a simple network as well as on a midsize network. Numerical examples confirm the reliable performance of the new reality‐tracking control strategy and its ability to identify (local) optimal solutions on real traffic networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The operation of large dynamic systems such as urban traffic networks remains a challenge in control engineering to a great extent due to their sheer size, intrinsic complexity, and nonlinear behavior. Recently, control engineers have looked for unconventional means for modeling and control of complex dynamic systems, in particular the technology of multi-agent systems whose appeal stems from their composite nature, flexibility, and scalability. This paper contributes to this evolving technology by proposing a framework for multi-agent control of linear dynamic systems, which decomposes a centralized model predictive control problem into a network of coupled, but small sub-problems that are solved by the distributed agents. Theoretical results ensure convergence of the distributed iterations to a globally optimal solution. The framework is applied to the signaling split control of traffic networks. Experiments conducted with simulation software indicate that the multi-agent framework attains performance comparable to conventional control. The main advantages of the multi-agent framework are its graceful extension and localized reconfiguration, which require adjustments only in the control strategies of the agents in the vicinity.  相似文献   

4.
In this paper, the route recommendation provided by the traffic management authority, rather than the uncontrollable bifurcation splitting rate, is directly considered as the control variable in the route guidance system; a real-time en-route diversion control strategy with multiple objectives is designed in a Model Predictive Control (MPC) framework with regard to system uncertainties and disturbances. The objectives include not only traffic efficiency, but also emission reduction and fuel economy, which respectively correspond to minimizing the total time spent (TTS), total amount of emissions and fuel consumption for all vehicles moving through a network. In the MPC framework, the routing control problem is transformed to be a constrained combinational optimization, which is solved by the parallel Tabu Search algorithm. Two representative traffic scenarios are tested, and the simulation results show: (1) The room for improvement in each objective by means of route diversion control is not consistent with each other and varies with the utilized traffic scenario. In the peak hour, the routing control can lead to significant improvements in TTS and fuel economy, while a relatively small improvement in emission reduction is achieved; in the off-peak hour, however, it is opposite, which indicates that routing is possibly dispensable from the aspect of improving traffic efficiency, but is required from the aspect of emission reduction. (2) The conflict among the multiple objectives varies with the utilized traffic scenario in route diversion control. Improving traffic efficiency often conflicts with emission reduction in both scenarios. For the objectives of traffic efficiency and fuel economy, they are not conflicting in peak hour, while in the off-peak hour, the two objectives are likely conflicting, and the improvement in one objective can lead to the degradation in the other objective. (3) Regardless of the scenarios of peak hour or off-peak hour, the proposed control strategy can result in a proper trade-off among the three chosen objectives.  相似文献   

5.
Anticipatory optimal network control is defined as the problem of determining the set of control actions that minimizes a network-wide objective function. This not only takes into account local consequences on the propagation of flows, but also the global network-wide routing behavior of the users. Such an objective function is, in general, defined in a centralized setting, as knowledge regarding the whole network is needed to correctly compute it. Reaching a level of centralization sufficient to attain network-wide control objectives is however rarely realistic in practice. Multiple authorities are influencing different portions the network, separated either hierarchically or geographically. The distributed nature of networks and traffic directly influences the complexity of the anticipatory control problem.This is our motivation for this work, in which we introduce a decomposition mechanism for the global anticipatory network traffic control problem, based on dynamic clustering of traffic controllers. Rather than solving the full centralized problem, or blindly performing a full controller-wise decomposition, this technique allows recognizing when and which controllers should be grouped in clusters, and when, instead, these can be optimized separately.The practical relevance with respect to our motivation is that our approach allows identification of those network traffic conditions in which multiple actors need to actively coordinate their actions, or when unilateral action suffices for still approximating global optimality.This clustering procedure is based on well-known algebraic and statistical tools that exploit the network’s sensitivity to control and its structure to deduce coupling behavior. We devise several case studies in order to assess our newly introduced procedure’s performances, in comparison with fully decomposed and fully centralized anticipatory optimal network control, and show that our approach is able to outperform both centralized and decomposed procedures.  相似文献   

6.
In this paper, a model predictive control approach for improving the efficiency of bicycling as part of intermodal transportation systems is proposed. Considering a dedicated bicycle lanes infrastructure, the focus in this paper is to optimize the dynamic interaction between bicycles and vehicles at the multimodal urban traffic intersections. In the proposed approach, a dynamic model for the flows, queues, and number of both vehicles and bicycles is explicitly incorporated in the controller. For obtaining a good trade-off between the total time spent by the cyclists and by the drivers, a Pareto analysis is proposed to adjust the objective function of the MPC controller. Simulation results for a two-intersections urban traffic network are presented and the controller is analyzed considering different methods of including in the MPC controller the inflow demands of both vehicles and bicycles.  相似文献   

7.
The state of the practice traffic signal control strategies mainly rely on infrastructure based vehicle detector data as the input for the control logic. The infrastructure based detectors are generally point detectors which cannot directly provide measurement of vehicle location and speed. With the advances in wireless communication technology, vehicles are able to communicate with each other and with the infrastructure in the emerging connected vehicle system. Data collected from connected vehicles provides a much more complete picture of the traffic states near an intersection and can be utilized for signal control. This paper presents a real-time adaptive signal phase allocation algorithm using connected vehicle data. The proposed algorithm optimizes the phase sequence and duration by solving a two-level optimization problem. Two objective functions are considered: minimization of total vehicle delay and minimization of queue length. Due to the low penetration rate of the connected vehicles, an algorithm that estimates the states of unequipped vehicle based on connected vehicle data is developed to construct a complete arrival table for the phase allocation algorithm. A real-world intersection is modeled in VISSIM to validate the algorithms. Results with a variety of connected vehicle market penetration rates and demand levels are compared to well-tuned fully actuated control. In general, the proposed control algorithm outperforms actuated control by reducing total delay by as much as 16.33% in a high penetration rate case and similar delay in a low penetration rate case. Different objective functions result in different behaviors of signal timing. The minimization of total vehicle delay usually generates lower total vehicle delay, while minimization of queue length serves all phases in a more balanced way.  相似文献   

8.
The paper describes a new method of optimizing traffic signal settings. The area-wide urban traffic control system developed in the paper is based on the Bee Colony Optimization (BCO) technique. The BCO method is based on the principles of the collective intelligence applied by the honeybees during the nectar collecting process. The optimal (or near-optimal) values of cycle length, offsets, and splits are discovered by minimizing the total travel time of all network users travelling through signalized intersections. The set of numerical experiments is performed on well-known traffic benchmark network. The results obtained by the BCO approach are compared with the results found by Simulated Annealing (SA). It has been shown that the suggested BCO approach outperformed the SA.  相似文献   

9.
A new timetable must be calculated in real-time when train operations are perturbed. Although energy consumption is becoming a central issue both from the environmental and economic perspective, it is usually neglected in the timetable recalculation. In this paper, we formalize the real-time Energy Consumption Minimization Problem (rtECMP). It finds in real-time the driving regime combination for each train that minimizes energy consumption, respecting given routing and precedences between trains. In the possible driving regime combinations, train routes are split in subsections for which one of the regimes resulting from the Pontryagin’s Maximum Principle is to be chosen. We model the trade-off between minimizing energy consumption and total delay by considering as objective function their weighted sum. We propose an algorithm to solve the rtECMP, based on the solution of a mixed-integer linear programming model. We test this algorithm on the Pierrefitte-Gonesse control area, which is a critical area in France with dense mixed traffic. The results show that the problem is tractable and an optimal solution of the model tackled can often be found in real-time for most instances.  相似文献   

10.
Traffic congestion and energy issues have set a high bar for current ground transportation systems. With advances in vehicular communication technologies, collaborations of connected vehicles have becoming a fundamental block to build automated highway transportation systems of high efficiency. This paper presents a distributed optimal control scheme that takes into account macroscopic traffic management and microscopic vehicle dynamics to achieve efficiently cooperative highway driving. Critical traffic information beyond the scope of human perception is obtained from connected vehicles downstream to establish necessary traffic management mitigating congestion. With backpropagating traffic management advice, a connected vehicle having an adjustment intention exchanges control-oriented information with immediately connected neighbors to establish potential cooperation consensus, and to generate cooperative control actions. To achieve this goal, a distributed model predictive control (DMPC) scheme is developed accounting for driving safety and efficiency. By coupling the states of collaborators in the optimization index, connected vehicles achieve fundamental highway maneuvers cooperatively and optimally. The performance of the distributed control scheme and the energy-saving potential of conducting such cooperation are tested in a mixed highway traffic environment by the means of microscopic simulations.  相似文献   

11.
An optimal control problem of traffic light duration is considered. The traffic noise level is introduced as a state variable in a dynamical optimization problem. A closed loop control system is designed which influences the green duration of the lights according to the equivalent noise level. Real time considerations lead to sub-optimal control implementation. This control policy decreases the noise levels at intensive traffic intersections. The traffic lights adapt their duration according to the noise pollution. Simulation and experimental results are discussed.  相似文献   

12.
Ramp metering (RM) is the most direct and efficient tool for the motorway traffic flow management. However, because of the usually short length of the on-ramps, RM is typically deactivated to avoid interference of the created ramp queue with adjacent street traffic. By the integration of local RM with mainstream traffic flow control (MTFC) enabled via variable speed limits (VSL), control operation upstream of active bottlenecks could be continued even if the on-ramp is full or if the RM lower bound has been reached. Such integration is proposed via the extension of an existing local cascade feedback controller for MTFC-VSL by use of a split-range-like scheme that allows different control periods for RM and MTFC-VSL. The new integrated controller remains simple yet efficient and suitable for field implementation. The controller is evaluated in simulation for a real motorway infrastructure (a ring-road) fed with real (measured) demands and compared to stand-alone RM or MTFC-VSL, both with feedback and optimal control results. The controller’s performance is shown to meet the specifications and to approach the optimal control results for the investigated scenario.  相似文献   

13.
Yield control and full signalization are typical traffic control solutions that can be used at large roundabouts. In the face of increasing congestion issues, it is preferred to use yield control during off‐peak periods and full signalization during peak periods. To automatically accommodate time‐varying vehicular demands, a multi‐level traffic control (MTC) is developed to implement hybrid yield control and fully actuated control at large four‐leg roundabouts. With new application of traffic control devices and traffic detection system, the right‐of‐way can be assigned to entering and circulating vehicles in three modes. The ‘all entering’ mode is equivalent to a yield control. The ‘no entering’ and ‘concurrent entering’ modes are equivalent to a fully actuated control. On the basis of time headways and occupancy times that are detected on the entry and circulatory roadways, the mode of right‐of‐way assignment can be changed in response to actual traffic conditions. For a specific mode of right‐of‐way assignment, traffic signal operation is managed by some detectable traffic events that are happening. The results of the simulation experiments conducted by VISSIM indicated that: (i) MTC was stabilized at the ‘all entering’ mode during off‐peak periods and at the ‘concurrent entering’ mode during peak periods; (ii) MTC would typically change the mode of right‐of‐way assignment according to actual traffic conditions as vehicular demands increased from off‐peak to peak or decreased from peak to off‐peak; and (iii) statistically speaking, MTC inherited the operational advantages of yield control and fully actuated control, and could be effective in improving the operational performance of large four‐leg roundabouts for all hours of the day, regardless of the level of left‐turn ratios. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

In order for traffic authorities to attempt to prevent drink driving, check truck weight limits, driver hours and service regulations, hazardous leaks from trucks, and vehicle equipment safety, we need to find answers to the following questions: (a) What should be the total number of inspection stations in the traffic network? and (b) Where should these facilities be located? This paper develops a model to determine the locations of uncapacitated inspection stations in a traffic network. We analyze two different model formulations: a single-objective optimization problem and a multi-objective optimization problem. The problems are solved by the Bee Colony Optimization (BCO) method. The BCO algorithm belongs to the class of stochastic swarm optimization methods, inspired by the foraging habits of bees in the natural environment. The BCO algorithm is able to obtain the optimal value of objective functions in all test problems. The CPU times required to find the best solutions by the BCO are found to be acceptable.  相似文献   

15.
The cumulative travel‐time responsive (CTR) algorithm determines optimal green split for the next time interval by identifying the maximum cumulative travel time (CTT) estimated under the connected vehicle environment. This paper enhanced the CTR algorithm and evaluated its performance to verify a feasibility of field implementation in a near future. Standard Kalman filter (SKF) and adaptive Kalman filter (AKF) were applied to estimate CTT for each phase in the CTR algorithm. In addition, traffic demand, market penetration rate (MPR), and data availability were considered to evaluate the CTR algorithm's performance. An intersection in the Northern Virginia connected vehicle test bed is selected for a case study and evaluated within vissim and hardware in the loop simulations. As expected, the CTR algorithm's performance depends on MPR because the information collected from connected vehicle is a key enabling factor of the CTR algorithm. However, this paper found that the MPR requirement of the CTR algorithm could be addressed (i) when the data are collected from both connected vehicle and the infrastructure sensors and (ii) when the AKF is adopted. The minimum required MPRs to outperform the actuated traffic signal control were empirically found for each prediction technique (i.e., 30% for the SKF and 20% for the AKF) and data availability. Even without the infrastructure sensors, the CTR algorithm could be implemented at an intersection with high traffic demand and 50–60% MPR. The findings of this study are expected to contribute to the field implementation of the CTR algorithm to improve the traffic network performance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The optimization of traffic signalization in urban areas is formulated as a problem of finding the cycle length, the green times and the offset of traffic signals that minimize an objective function of performance indices. Typical approaches to this optimization problem include the maximization of traffic throughput or the minimization of vehicles’ delays, number of stops, fuel consumption, etc. Dynamic Traffic Assignment (DTA) models are widely used for online and offline applications for efficient deployment of traffic control strategies and the evaluation of traffic management schemes and policies. We propose an optimization method for combining dynamic traffic assignment and network control by minimizing the risk of potential loss induced to travelers by exceeding their budgeted travel time as a result of deployed traffic signal settings, using the Conditional Value-at-Risk model. The proposed methodology can be easily implemented by researchers or practitioners to evaluate their alternative strategies and aid them to choose the alternative with less potential risk. The traffic signal optimization procedure is implemented in TRANSYT-7F and the dynamic propagation and route choice of vehicles is simulated with a mesoscopic dynamic traffic assignment tool (DTALite) with fixed temporal demand and network characteristics. The proposed approach is applied to a reference test network used by many researchers for verification purposes. Numerical experiments provide evidence of the advantages of this optimization method with respect to conventional optimization techniques. The overall benefit to the performance of the network is evaluated with a Conditional Value-at-Risk Analysis where the optimal solution is the one presenting the least risk for ‘guaranteed’ total travel times.  相似文献   

17.
Frequently implemented at freeway accesses to streamline traffic, ramp-metering control strategy is often implemented during rush hours in heavily congested areas. This paper presents a novel ramp-metering control model capable of optimizing mainline traffic by providing metering rates for accesses within the control segments. Based on Payne's continuum traffic stream model, a linear dynamic model with a quadratic objective function is constructed for integrated-responsive ramp-metering control. Incorporating on-line origin–destination (OD) estimation of co-ordinated interchanges into the proposed model increases efficiency of the control. In addition, an iterative algorithm is proposed to obtain the optimal solution. Simulation results demonstrate the robustness of the proposed model and its ability to streamline freeway traffic while avoiding traffic congestion.  相似文献   

18.
A Model Predictive Control (MPC) strategy for motorway traffic management, which takes into account both conventional control measures and control actions executed by vehicles equipped with Vehicle Automation and Communication Systems (VACS), is presented and evaluated using microscopic traffic simulation. A stretch of the motorway A20, which connects Rotterdam to Gouda in the Netherlands, is taken as a realistic test bed. In order to ensure the reliability of the application results, extensive speed and flow measurements, collected from the field, are used to calibrate the site’s microscopic traffic simulation model. The efficiency of the MPC framework, applied to this real sizable and complex network under realistic traffic conditions, is examined for different traffic conditions and different penetration rates of equipped vehicles. The adequacy of the control application when only VACS equipped vehicles are used as actuators, is also considered, and the related findings underline the significance of conventional control measures during a transition period or in case of increased future demand.  相似文献   

19.
The two main directions to improve traffic flows in networks involve changing the network topology and introducing new traffic control measures. In this paper, we consider a co-design approach to apply these two methods jointly to improve the interaction between different methods and to get a better overall performance. We aim at finding the optimal network topology and the optimal parameters of traffic control laws at the same time by solving a co-optimization problem. However, such an optimization problem is usually highly non-linear and non-convex, and it possibly involves a mixed-integer form. Therefore, we discuss four different solution frameworks that can be used for solving the co-optimization problem, according to different requirements on the computational complexity and speed. A simulation-based study is implemented on the Singapore freeway network to illustrate the co-design approach and to compare the four different solution frameworks.  相似文献   

20.
The coordinated development of city traffic and environment is a key research content in traffic field in twenty-first Century. Among them, road section environmental traffic capacity analysis is one of the important research issues. It can provide solid theoretical basis and reliable data support for road network traffic optimization control, road traffic pollution control and city traffic structure optimization. This paper analyzed main factors which impacted environmental traffic capacity from two aspects, including road capacity constraint conditions and road traffic pollution control constraint conditions. Then, road section environmental traffic capacity optimization model was established, and method of improved augmented Lagrange function was used to solve the model. Case study showed that, (1) The environmental traffic capacity optimal model and methodology were effective; (2) In order to ensure road section environmental traffic capacity greater than (or equal to) road capacity, some measures could be taken including adjusting motor vehicle type proportion as well as improving emission characteristics of motor vehicles exhausting pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号