首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用新基质沥青、新改性沥青和再生剂再生老化 SBS 改性沥青,测定了不同方式再生后的 SBS 改性沥青 RTFOT老化前后的25℃针入度和老化后的残留延度,以及不同老化时间后的质量损失。通过对不同再生再生方式再生后的 SBS 改性沥青的残留针入度比、残留延度和质量损失率进行对比,分析再生 SBS 改性沥青的老化性能。研究结果表明,通过新改性沥青再生的 SBS 改性沥青的老化性能优于通过新基质沥青和再生剂再生的 SBS改性沥青。  相似文献   

2.
将复合再生剂和普通沥青再生剂分别用于老化SBS改性沥青的再生,通过再生沥青的物理性能、化学组成分析和红外光谱测试研究了两种再生剂对老化SBS改性沥青性能和结构组成的影响。物理性能测试结果表明:复合再生剂对老化SBS改性沥青物理性能的恢复作用优于普通再生剂,当复合再生剂的掺量达到老化沥青质量的8%时,再生SBS改性沥青的性能基本接近老化前SBS改性沥青的性能;红外光谱和化学组成测试结果显示:普通再生剂只能调节老化SBS改性沥青中基质沥青的化学组成,无法修复SBS断裂的分子链,而复合再生剂不仅能调节老化SBS改性沥青中基质沥青的化学组成,还可通过其分子结构中的极性环氧基团与SBS的降解产物发生化学反应以修复SBS因老化发生降解的分子链。  相似文献   

3.
周艺  李泉  童瑶  屈芳婷  温广香  吴超凡 《公路》2022,(6):302-309
通过制备SBS改性剂掺量为0~5.0%的改性沥青并测试针入度、软化点、5℃延度、弹性恢复以及旋转黏度,研究了改性沥青宏观指标与SBS改性剂掺量间的联系。改性沥青再生试验表明:含SBS改性剂成分的B再生剂比普通A再生剂对老化改性沥青再生效果更好,抗老化能力也更为优异。采用红外光谱测试以及荧光显微镜成像对改性沥青中SBS改性剂含量进行定量以及定性的测定,并与改性沥青宏观指标相对应。改性沥青老化后其SBS改性剂含量降低,仅使用再生剂对其进行再生并不能恢复SBS改性剂含量,A/B新旧混合沥青中SBS改性剂含量进一步提升,可以达到3.05%的较高含量。采用动态剪切流变(DSR)试验研究改性沥青的高温抗车辙能力,老化后回收沥青的高温稳定性增强,掺入再生剂会降低其高温抗车辙能力,再生沥青、新旧混合沥青与新改性沥青的高温特性相似。  相似文献   

4.
《公路》2017,(10)
为揭示老化SBS改性沥青的再生规律和指导再生沥青设计,分别测试了应用新SBS改性沥青和再生剂再生老化SBS改性沥青的性能,并回归了再生沥青性能与新沥青、再生剂掺量的关系。研究结果表明,再生SBS改性沥青的高温性能好,低温性能不能得到有效地改善,必须采取新SBS改性沥青与再生剂复合再生方式。由于SBS改性剂交联网络结构在老化前后的差异,再生SBS改性沥青软化点随新沥青和再生剂掺量的增加呈现出相反的发展趋势。再生SBS改性沥青的黏度、针入度与新沥青、再生剂掺量之间非线性关系可采用两相液体混溶模型描述,软化点、延度与新沥青或再生剂掺量之间分别具有良好的线性和指数关系。  相似文献   

5.
为揭示老化SBS改性沥青的再生规律,指导再生沥青设计,文中分别测试了采用新SBS改性沥青和再生剂再生老化SBS改性沥青的性能,并运用两相液体混溶理论对再生沥青性能与新沥青、再生剂掺量的关系进行了研究。结果表明,单一再生剂的再生SBS改性沥青的高温性能好,低温性能不能得到有效改善,必须采取新SBS改性沥青与再生剂复合再生方式;再生SBS改性沥青的粘度、针入度与新沥青、再生剂掺量之间的非线性关系可采用两相液体混溶模型描述,软化点、延度与新沥青或再生剂掺量之间分别具有良好的线性和指数关系。  相似文献   

6.
为了恢复老化SBS改性沥青的各项性能,并确定合适的再生剂掺量,对SBS改性沥青进行不同时间的旋转薄膜加热老化。老化试验时间段分别为160、200、240、280和320 min,试验温度为163℃。对老化前后的试样加入不同剂量(2%、4%、6%、8%、10%、12%)再生剂后形成的再生沥青试样进行针入度、软化点、延度等物理指标检测,分析再生剂对老化沥青各项指标性能的影响。基于SBS改性沥青老化时间与再生剂添加剂量关系的分析,进行插值拟合,得到最佳再生剂用量的计算公式,从而确定实际工程应用中老化沥青混合料的最佳再生剂用量。  相似文献   

7.
为研究生物再生剂再生胶结料的流变性能,分析比较了基质沥青及SBS改性沥青的原样、老化沥青及不同掺量下的再生沥青流变性质。首先,通过旋转薄膜烘箱、压力老化获取了长期老化沥青,随后将老化的沥青与5%和10%的生物再生剂混合制备再生沥青,最后通过黏度试验、温度扫描及弯曲蠕变试验测试了原样沥青、老化沥青及再生沥青的流变性能。试验结果表明,生物再生剂的加入会使得老化沥青的各项性能向原始沥青靠近,其中车辙因子及黏度变化尤为明显,表现为添加10%的生物再生剂有助于将长期老化沥青的和易性和抗车辙能力恢复到原来的水平,但是疲劳因子及低温性能影响较弱,表现为添加10%的生物再生剂后两种老化沥青的疲劳因子仅降低30%,离原样沥青差距明显。此外,对比两种沥青的再生沥青可以发现,SBS改性沥青的再生需要考虑的情况更为复杂,简单的组分调和无法使得老化的改性沥青性能得到良好恢复。  相似文献   

8.
废弃植物油再生沥青成本低、绿色环保、性能较好,具有广阔发展前景。为探究植物油再生剂最佳老化时间及对再生沥青与集料黏附性的影响,将大豆油分别老化2、4、6、8、10、12、14、16、18、20 h,制备了11种不同老化程度的植物油再生剂,对短期老化后的50号基质沥青进行再生,并进行了布洛克菲尔黏度、红外光谱、改进型的水煮法以及接触角测试等试验。结果表明:(1)随植物油再生剂老化时间增加,再生沥青黏度增加;(2)植物油老化后羰基、亚砜基含量增加使再生沥青亲水基团含量增加,疏水性降低;(3)沥青再生后,再生剂含有的轻质组分使沥青与集料黏附性增加,随再生剂老化时间增加,剥落面积百分率降低,抗水损害能力增加;(4)Z11再生沥青部分指标接近或超出基质沥青,再生效果最佳,再生剂最佳老化时间为20 h。  相似文献   

9.
叶萍 《公路交通科技》2013,(12):140-142
随着我国沥青路面再生利用的逐渐增多,沥青的老化与再生成为研究的重点。本文在室内制备SBS改性沥青和选取再生剂,对SBS改性沥青的老化与再生特性展开研究,并与基质沥青进行比较,结果表明SBS改性沥青的各项性能指标随着老化程度的加深而逐渐下降,再生剂通过组分调和可以一定程度上恢复老化沥青的性能指标,但其对老化SBS改性沥青的延度和软化点恢复效果并不理想,并不能真正意义上实现SBS改性沥青的再生。  相似文献   

10.
《公路》2021,66(8):42-48
为研究温度与老化程度对SBS复合红油增塑剂及C9石油树脂改性沥青低温流变性能的影响,采用弯曲梁流变试验(BBR)对3种老化程度条件下的SBS复合改性沥青低温流变性能进行研究,并与基质沥青和SBS改性沥青进行对比分析。研究表明,掺加增塑剂的SBS改性沥青低温性能优于其他沥青,但随温度下降及老化程度加深增塑剂对其改性沥青低温性能改善作用明显下降;掺加石油树脂的SBS改性沥青低温性能最差,但可以改善其改性沥青抗老化性能。通过松弛弹性模量主曲线方法分析可知,老化程度是影响沥青应力松弛能力的主要因素,因此建议通过减缓沥青老化程度的方法来延长其使用寿命。  相似文献   

11.
依据旧沥青老化及再生机理,研发了一种沥青再生剂。该再生剂以中黏度芳烃油为基质油,添加70#沥青和非胺类沥青抗剥落剂配制而成,采用正交试验方法进行了配方优化设计。通过再生沥青的针入度、软化点、延度及布氏黏度指标确定了再生剂的配方组分为:芳烃油∶70#沥青∶非胺类沥青抗剥落剂=15∶4∶1。再生沥青的性能试验结果表明:研发的再生剂对老化的70#沥青和SBS改性沥青均有良好的再生效果。  相似文献   

12.
SBS改性沥青在环境因素作用下发生老化,主要表现为SBS分子链发生了降解。针对SBS改性沥青网络结构的变化,本文利用荧光显微镜电镜、凝胶渗透色谱等微观表征手段,分别采用两种环氧官能团化合物(脂肪族缩水甘油醚树脂和缩水甘油胺类)与催化裂化油浆和基质沥青混溶,制备了两种再生剂。结果表明两种再生剂均可恢复SBS改性沥青三嵌段分子链结构,但脂肪族缩水甘油醚树脂类再生剂再生效果更优。  相似文献   

13.
为了合理地提高旧沥青混合料掺配比例、利于再生沥青路面技术的推广应用,提出了一种综合考虑再生沥青技术性能和经济效益指标要求的再生沥青优化设计方法。结合厂拌热再生SBS改性沥青路面工程,系统地测试了新、旧SBS改性沥青和再生剂不同掺配比例(旧沥青掺量占新旧沥青总量的0%,20%,30%,40%,100%;再生剂掺量占旧沥青的0%,4%,8%,12%)时的再生SBS改性沥青性能指标,并对比单一使用再生剂或新沥青再生与复合使用再生剂和新沥青再生两种测试结果发现,新沥青、再生剂都能够改善旧SBS改性沥青的性能,但单一再生的SBS改性沥青低温性能差,而应用复合再生方式能有效改善再生沥青的低温性能。为确定复合再生时旧沥青与再生剂掺量的合理范围,拟合了再生SBS改性沥青性能指标与旧沥青掺量、再生剂掺量的关系式,并计算了新SBS改性沥青混凝土路面费用与再生SBS改性沥青混凝土路面费用差值随旧沥青掺量、再生剂掺量的变化关系。根据再生SBS改性沥青技术指标要求,确定了旧沥青掺量和再生剂掺量的优化取值范围。指出一般情况下厂拌热再生SBS改性沥青混凝土路面费用明显低于新铺热拌SBS改性沥青混凝土路面费用,旧沥青混合料用量可达42%,突破了《公路沥青路面再生技术规范》的推荐范围。考虑再生沥青性能指标测试误差影响,剔除试验误差后旧沥青混合料用量为35.2%。  相似文献   

14.
摘要:为探究老化SBS改性沥青再生利用的可行性。采用薄膜烘箱试验对室内制备的SBS改性沥青进行老化,通过添加自制再生剂对老化SBS改性沥青进行再生,对原样与再生SBS改性沥青进行常规试验、疲劳试验,并对其进行二次老化,对比分析原样与再生SBS改性沥青的常规性能、抗疲劳性能及抗老化性能。试验与分析结果表明:老化SBS改性沥青的再生利用是可行的,再生SBS改性沥青抗疲劳性能与抗老化性能在一定程度上甚至优于原样SBS改性沥青。  相似文献   

15.
为研究再生SBS改性沥青不同老化时间的老化程度和老化速率,以及与新SBS改性沥青的差异性,建立了再生SBS改性沥青和新SBS改性沥青的非线性微分老化方程,通过测定再生SBS改性沥青和新SBS改性沥青在不同TFOT老化时间后的粘度、针入度、软化点和延度指标,计算得到老化参数,根据老化方程和老化参数分析了再生SBS改性沥青的老化性能。研究结果表明,在老化初期,除延度外,再生SBS改性沥青的各项性能均比新SBS改性沥青衰减迅速,但在长时间老化后,2种沥青的各项性能趋于相同。  相似文献   

16.
采用智能化监测设备获取就地热再生高温加热后的沥青路面温度分布,研究就地热再生施工过程中高温加热对SBS改性沥青的老化与再生效果的影响;采用常规试验和红外光谱分析,对比室内外再生效果的差异。结果表明:沥青经过长期自然老化后低温性能下降,黏性增强,再生剂加入可改善老化沥青的低温延展性能,红外光谱分析表明,再生剂加入有助于调整老化沥青的组分。就地热再生高温加热后沥青路面的表面温度可达230℃,原路面老化改性沥青经过加热机高温加热后发生二次老化,此外,现场再生沥青的性能并没有得到有效改善。综合室内外原路面老化沥青的再生效果,提出需根据原路面老化沥青的现场再生情况,为现场施工质量的保证留出一定的再生剂余量。  相似文献   

17.
翟龙  黄湘宁  高夕力 《交通科技》2024,(1):136-138+143
为研究生物油复配SBS再生沥青的高低温性能,将生物油及SBS掺入经旋转薄膜烘箱试验(RTFOT)和压力老化试验(PAV)的原样沥青中制备再生沥青,通过三大标指标试验研究生物油掺量对老化沥青常规性能的影响,进而通过动态剪切流变(DSR)和弯曲梁流变(BBR)试验研究生物油复配SBS后再生沥青的高低温性能。结果表明,生物油能恢复老化沥青三大指标,但恢复不同指标的掺量有明显差异,恢复低温性能指标时高温性能存在过渡软化问题;生物油复配SBS可恢复老化沥青高低温性能,且随SBS掺量增加效果逐渐变好,采用6%生物油复配2%SBS用于老化沥青再生时,再生沥青高低温性能均优于原样沥青。  相似文献   

18.
增塑剂能够增加沥青的拉伸性和柔韧性,同时降低沥青的高温黏度,提高抗冲击能力。基于等针入度对不同道路沥青的老化耐久性进行研究,研究方法是对2种等针入度的沥青(基质90#沥青、增塑SBS90#沥青)进行老化,对不同沥青的技术指标进行对比分析。研究内容包括:确定增塑SBS沥青的最佳增塑剂用量,不同老化时间的增塑SBS沥青和基质90#沥青老化试验,对比评价老化沥青各项性能指标变化幅度及沥青的耐老化性。试验结果表明,在掺加增塑剂之后,沥青的延度得到了大幅度提升,同时针入度数值也在提高,因此,需要综合考虑沥青高低温性能以确定合适的增塑剂掺量。在耐老化性方面,增塑SBS沥青比基质沥青有明显的改善。研究结果对改性沥青的研究具有一定的参考价值。  相似文献   

19.
为了给实际工程中再生沥青混合料低温性能的改善提供一些理论指导,以再生SBS沥青混合料为研究对象,基于间接拉伸试验和X-ray CT无损扫描技术,研究不同SBS掺量(4%、5%和6%)和不同RAP掺量(30%、45%和60%)下经冻融作用的再生SBS改性沥青混合料的低温性能。研究结果表明:经冻融后的再生SBS改性沥青混合料的低温性能均有所下降;相较于基质沥青热再生混合料,再生SBS改性沥青混合料具有更好的耐久性及低温性能;冻融后的再生SBS改性沥青混合料试件闭口空隙率增大。  相似文献   

20.
SBS改性沥青路面的养护维修将产生大量回收SBS改性沥青混合料。与回收普通沥青混合料相比,回收SBS改性沥青混合料具有更高的利用价值。在现行规范设计方法的基础上进行补充完善,形成再生SBS改性沥青混合料配合比设计方法,设计内容主要包括RAP料中老化SBS改性沥青老化程度的判别、老化SBS改性沥青的再生设计、RAP掺量的确定、新沥青用量确定等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号