首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究正交异性钢桥面板U肋对接焊缝疲劳细节的疲劳性能,应用有限元软件ABAQUS建立了局部的钢箱梁节段模型。探讨了有限元模型中关注细节附近网格划分大小,以及疲劳荷载的加载方式对关注细节应力提取结果的影响,并确定了U肋对接疲劳细节的应力幅分析过程。研究结果表明:在确保与网格大小为0.5t时对比的精确度≥95%的情况下,U肋与横隔板连接处附近U肋网格大小最大可取2t;横隔板间U肋对接焊缝处的U肋网格大小最大可取8t;横向加载分析时,将疲劳荷载布置于U肋正上方、U肋间和U肋腹板上方的加载方式既简化了加载步骤,又能得到细节的实际最不利荷载位置;疲劳荷载加载分析时,钢桥面板盖板网格不大于100 mm,加载的荷载步不大于100 mm时可以得到比较精确的结果;对于U肋对接疲劳细节,正确的应力幅分析过程为:首先将疲劳车辆的双轴组纵向中心线与车道中心线相对应进行纵向加载,获得U肋对接细节取得应力最大值时对应的轮载纵向位置,然后在该纵向位置进行横向移动加载,确定U肋对接细节最不利的横向位置,最后在该最不利横向位置进行纵向加载获取纵向应力历程曲线,再通过应力历程曲线计算该细节的应力幅。  相似文献   

2.
根据国内外钢箱梁的设计经验,选取3种不同的横隔板设置形式,通过有限元方法建立钢箱梁的空间有限元模型,计算横隔板与U肋相交的桥面板、U形加劲肋的对接处、横隔板过焊孔处等4种构造细节在车轮荷栽作用下的应力幅,得出横隔板设置形式对桥面板疲劳应力幅的影响.  相似文献   

3.
为了研究横隔板变形对曲线钢箱梁桥焊缝细节疲劳应力的影响,以某三跨连续钢箱梁高架桥为背景,建立正常横隔板和变形横隔板的钢箱梁模型,针对横隔板分别与U肋、腹板加劲肋、底板开口肋连接焊缝3处细节,研究横隔板变形对各细节应力影响面和最不利工况下应力状态的影响,对比面内、外应力对各细节疲劳损伤的贡献。结果表明:横隔板变形对横隔板-腹板加劲肋细节和横隔板-底板开口肋细节应力影响范围和最不利位置影响显著,并且会导致各疲劳细节的拉应力和压应力有较大增幅,相对于正常横隔板而言更容易产生疲劳损伤;横隔板变形会导致各细节面外应力占比增大,促使面外应力成为各连接焊缝疲劳损伤的主要因素。  相似文献   

4.
某大型悬索桥为主跨1650 m的两跨连续钢箱梁悬索桥,加劲梁采用扁平流线型分离式双箱。近2年在正交异性板钢箱梁顶板U肋嵌补段发现焊缝开裂状况,为研究及处治该病害,采用大型有限元程序ANAYS进行局部仿真计算,分析焊缝开裂后的应力分布规律、影响范围。结果表明:重车轮压的疲劳荷载、施工焊接质量等是嵌补段焊缝开裂的主要原因;钢箱梁顶板U肋嵌补段焊缝开裂会对邻近结构抗力产生影响,U肋嵌补段开裂使相邻U肋嵌补段焊缝应力增加11.8%,使U肋与顶板之间焊缝主拉应力增加57%,使邻近位置的横隔板弧形缺口主拉应力增加6%。根据分析结果建议尽早处治焊缝开裂问题,短期养护措施推荐在低应力区打止裂孔和设置临时支撑架,长期养护措施建议刨去已开裂焊缝后补焊、嵌补段整体切割后补焊和改用高强度螺栓连接方式。  相似文献   

5.
结合《公路钢结构桥梁设计规范》(JTG D64-2015)疲劳荷载模型Ⅲ,以某城市高架分离式双箱钢箱梁正交异性桥面板为研究对象,建立其正交异性桥面板的精细化分析模型。通过有限元方法得到U肋疲劳敏感细节在疲劳荷载模型Ⅲ下的应力分布,验算了其疲劳强度。分析结果表明:正交异性钢桥面板疲劳强度满足抗疲劳设计要求。在疲劳荷载模型Ⅲ作用下,悬臂板处U肋疲劳细节的等效应力幅较箱内和横梁处大,悬臂板处U肋构造细节相对其余位置更容易发生疲劳损伤,为钢箱梁抗疲劳设计验算的控制部位。同时,钢箱梁大悬臂下翼缘疲劳应力幅值较大,设计时需引起重视。  相似文献   

6.
李行  潘军  唐雪松 《公路与汽运》2020,(1):106-109,138
为研究车轮横向分布对钢桥面板顶板-U肋连接处疲劳损伤的影响,以佛山平胜大桥为研究对象,通过数值模拟,计算各车型车轮荷载不同横向位置下顶板-U肋连接处的应力,采用英国规范BS5400计算该处的疲劳损伤度;建立车轮分布模型,计算车轮在车道不同位置的分布概率,提出考虑车轮横向分布的疲劳损伤计算方法。结果表明,顶板-U肋连接处的应力幅受车轮横向分布的影响范围较小,约为1.5 m,不必考虑多车效应;U肋损伤分布差异较大,U肋底板损伤比腹板损伤更严重;考虑车轮横向分布效应后,顶板-U肋连接处的疲劳寿命计算值提高69%,钢桥面板疲劳损伤分析中应考虑车轮的横向分布效应。  相似文献   

7.
为研究在车辆荷载反复作用下,正交异性钢桥面板U肋与横隔板焊缝构造细节处的疲劳强度是否满足疲劳设计要求,以九江长江公路大桥钢箱梁结构为研究对象,设计疲劳试样进行疲劳试验,得到了用于该构造细节处疲劳寿命评估的失效概率分别为50%及2.3%的应力幅~循环次数曲线,参照Eurocode 3规范,将疲劳曲线延长至长寿命区,提出适合该细节处的疲劳设计曲线及方程。依据实测车辆荷载谱及简化的有限元模型,选择合理的加载方式与荷载冲击系数,计算得到关注点的应力~时间历程曲线,并评估该构造细节的疲劳寿命。结果表明,在实测荷载谱作用下,该细节处最大应力幅值为24.49MPa,小于疲劳截止限,其疲劳强度满足疲劳设计要求。  相似文献   

8.
为给车辆荷载作用下钢箱梁的抗疲劳设计提供依据,对钢箱梁局部构造对其关键焊缝疲劳性能的影响进行研究。采用有限元方法计算了钢箱梁焊缝在单轮移动荷载下的应力曲线,在此基础上分析了纵向加强桁架对钢箱梁关键焊缝疲劳应力范围和疲劳损伤的影响。计算、分析表明,纵向加强桁架增大了钢箱梁临近区域顶板的竖向刚度,并改变了其临近焊缝细节的受力状态,这使得纵向加强桁架附近焊缝的疲劳应力和疲劳损伤远小于相同位置无纵向加强桁架的钢箱梁焊缝的值;局部构造差异对钢箱梁桥面关键焊缝疲劳性能的影响明显,在钢箱梁抗疲劳设计中应予以考虑。  相似文献   

9.
为研究正交异性钢桥面板典型疲劳细节在单轮荷载作用下的应力及疲劳损伤度,以福州长门特大桥为背景,采用ABAQUS有限元软件建立钢桥面板节段模型和3处易开裂部位(横隔板-U肋焊缝、横隔板处和横隔板间的顶板-U肋焊缝)的子分析模型,分析车轮荷载作用位置变化时疲劳细节的应力时程;并采用雨流计数法分析各细节处的应力幅,对疲劳细节进行疲劳损伤度分析。结果表明:单轮荷载顺桥向位于相邻横隔板间时,对横隔板处的顶板-U肋焊缝应力产生较大影响;荷载横向分布接近±750mm时,疲劳细节的应力时程曲线较为平缓,荷载对其应力的影响较小;疲劳损伤最大的是横隔板处的顶板-U肋焊缝焊根部位,该部位易产生疲劳破坏。建议在该部位增设钢角撑或钢板等,以降低该位置的应力幅和疲劳损伤度,提高结构的耐久性。  相似文献   

10.
针对正交异性钢桥面板顶板-U肋焊缝疲劳开裂问题,提出一种在钢桥面顶面粘贴小尺寸矩形板的疲劳加固方法.以某主跨1490 m的悬索桥为背景,建立正交异性钢桥面局部有限元模型,计算加固前、后钢桥面板顶板-U肋焊缝在车轮横向荷载与纵向移动荷载下的应力情况;分析加固板厚度、横桥向尺寸、顺桥向尺寸和材料属性等参数对加固效果的影响规...  相似文献   

11.
《公路》2015,(7)
在车辆荷载作用下,正交异性钢桥面板的疲劳开裂对结构的疲劳性能以及使用安全性能具有较大的影响,钢桥面板中复杂的焊接连接细节成为裂纹出现的集中区域。依据在正交异性钢桥面板方面研究相对成熟的AASHTO、Eurocode和日本规范,结合我国公路钢结构桥梁设计规范(送审稿);通过数值分析得到疲劳敏感细节在各国标准疲劳车辆荷载下的应力响应,并按照规范对细节的疲劳强度进行验算。验算结果表明,疲劳细节的应力幅对轴重比较敏感;顶板与U肋细节的纵向影响线比横隔板与U肋焊接处的影响线短;顶板与U肋处细节和横隔板挖孔处细节更容易发生疲劳裂纹。  相似文献   

12.
本文选取U肋与桥面板连接区域、U肋与横隔板交叉部位、U肋等细节,通过实桥静力试验,结合有限元模型分析,研究正交异性钢桥面板局部应力的大小和分布规律.结果表明:钢桥面板各关键构造细节的应力影响线都比较短,纵向应力主要受两个横隔板间距的影响,横向应力受与其相邻的两个U肋间距内荷载的影响;当车辆通过时,测点会出现多个应力循环;在U肋-横隔板连接焊缝附近,U肋腹板上的应力水平较高;横隔板弧形切口自由边缘两侧应力性质相反,一侧受压、一侧受拉,应力幅值较大,存在疲劳开裂隐患;因此设计中应该对构造细节进行详细研究分析,并注意焊接区域的细部设计与制造,避免疲劳开裂.  相似文献   

13.
为研究正交异性钢桥面板纵肋-顶板焊缝位置的疲劳裂纹扩展特性,以某钢箱梁斜拉桥为工程背景,基于线弹性断裂力学与扩展有限元方法,通过ABAQUS软件建立纵肋-顶板三维裂纹扩展模型,引入半椭圆初始裂纹,对焊根与焊趾裂纹尖端的应力强度因子进行分析.分析结果表明,在车辆荷载的作用下,纵肋-顶板连接细节的疲劳裂纹是以Ⅰ型为主导的Ⅰ-Ⅱ-Ⅲ复合型裂纹;裂纹在横向位于车轮正下方,纵向位于两车轴中间时,疲劳裂纹扩展趋势最大;在车辆经过裂纹附近2 m范围内时,应力强度因子在最值间波动,对裂纹扩展产生较大影响.  相似文献   

14.
何江 《城市道桥与防洪》2013,(7):209-213,18
该文以某斜拉桥为研究背景,基于钢箱梁疲劳监测结果,研究了超大跨径斜拉桥钢箱梁疲劳性能。结果表明:在车载的累积作用下,钢箱梁顶板和U肋腹板易出现疲劳裂纹;索梁锚固区钢锚箱各板件的应力幅均较小,但在长期交通荷载作用下,箱梁外腹板亦有可能出现疲劳裂纹。而底板、底板U肋、索塔钢锚箱的应力幅值较小,不会出现疲劳损伤。  相似文献   

15.
为准确评估钢桥结构的疲劳损伤状态和剩余疲劳寿命,以江阴长江大桥为背景,对该桥钢箱梁疲劳裂纹产生位置进行连续疲劳应变监测,获取应变时程数据,结合雨流计数法技术建立日疲劳应力谱;分析应力幅~循环次数分布规律;研究累积损伤度分布特征,建立损伤度分布模型,计算不同车道构造细节疲劳损伤度和剩余寿命。研究结果表明:钢箱梁顶板测点、U肋与横隔板焊接末端处、弧形缺口有效截面最小处均以压应力为主,U肋以拉应力为主;应力幅累积循环次数分布服从Weibull函数分布;疲劳累积损伤度分布服从Boltzman函数分布,顶板与U肋连接处U肋腹板沿横桥向慢车道疲劳损伤较快车道损伤大,下游车道较上游车道损伤大,其中下游慢车道U肋腹板细节疲劳损伤最大。  相似文献   

16.
为研究钢桥面板疲劳裂纹耦合扩展机理,建立焊接分析有限元模型,对纵肋-顶板连接细节、纵肋-横隔板连接细节的焊接全过程进行数值模拟,基于扩展有限元方法建立钢桥面板数值断裂力学模型,对疲劳敏感细节裂纹静、动态扩展行为进行分析。焊接过程分析结果表明:纵肋-顶板连接焊缝区域、纵肋-横隔板焊缝端部区域均存在较大的残余拉应力,峰值接近钢材屈服强度;横隔板挖孔边缘存在切向残余拉应力,峰值约为200 MPa。疲劳裂纹扩展行为分析结果表明:纵肋-顶板连接细节在车辆荷载单独作用下以受压为主,考虑残余应力场作用后细节处于拉-拉应力状态,疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹;车辆偏载作用下纵肋产生扭转变形,计入残余应力后纵肋-横隔板连接焊缝焊趾受拉开裂,萌生于纵肋焊趾、向纵肋腹板扩展的疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹,萌生于纵肋-横隔板连接焊缝横隔板侧焊趾和横隔板挖孔边缘的疲劳裂纹为Ⅰ-Ⅱ型复合裂纹;纵肋对接细节的疲劳裂纹为Ⅰ型裂纹,车辆荷载作用下以受拉为主,位于纵肋底板弧形过渡区的裂纹相较于纵肋底板中间区域具备更强的扩展能力。  相似文献   

17.
为确定钢桥面板U肋与顶板双面焊连接相比单面焊连接疲劳性能的改善效果,以某实桥正交异性钢桥面板节段为对象,采用ANSYS软件建立有限元模型,计算不同工况下各疲劳易损部位的切口应力幅,并分析双面焊连接疲劳性能的影响因素。结果表明:U肋与顶板双面焊连接的最大切口应力幅比单面焊时减小19.1%,能有效提高U肋与顶板连接焊缝的疲劳性能;U肋与顶板单面焊连接的最不利疲劳易损部位为焊根,而双面焊连接的最不利疲劳易损部位变为外侧焊趾;焊缝未熔透间隙长度和高度对U肋与顶板双面焊连接疲劳性能的影响较小;增大焊缝和顶板夹角可显著降低双面焊连接的最大切口应力幅,提高U肋与顶板双面焊连接的疲劳性能。  相似文献   

18.
为了分析正交异性桥钢面板中桥面板与U肋焊接部位应力分布规律,以宁波市象山港大桥钢箱梁为研究背景,利用Midas Civil及Midas FEA建立全桥整体及钢箱梁局部节段有限元模型,采用现行《公路钢结构桥梁设计规范》(JTG D64-2015)中的疲劳荷载车模型,依次计算焊脚处桥面板、U肋的纵横向应力及其应力幅,并与现场实测数据进行比较和分析。分析结果表明:疲劳正应力计算结果满足规范要求;疲劳荷载作用下,焊脚处桥面板、U肋纵向应力的交变循环作用对正交异性钢桥面板的疲劳寿命影响更为显著,而横向应力对焊脚处裂缝的产生及发展有一定影响;局部轮压对桥面板应力的影响较大,应以最不利布置(HX2)进行设计计算。  相似文献   

19.
为研究超大跨径斜拉桥钢桥面板的疲劳损伤问题,本文以某斜拉桥为工程背景,对实桥进行了现场疲劳损伤监测与分析,并基于断裂力学的三维裂纹扩展模型,对钢箱梁顶板-U肋和横隔板-U肋等焊接细节进行了数值仿真与研究。结果表明:实桥顶板-U肋焊缝细节高应力幅(大于10MPa)循环次数与疲劳损伤度明显低于横隔板-U肋细节,横隔板-U肋焊缝最大应力幅达到75~90MPa,顶板-U肋焊缝最大应力幅为15~30MPa,横隔板-U肋焊缝细节处裂纹数量远大于顶板-U肋焊缝细节处裂纹数量;顶板-U肋焊缝裂纹在扩展过程中基本保持平面,裂纹扩展有先沿焊缝方向纵向扩展,再向深度方向扩展的趋势;横隔板-U肋焊缝焊趾处裂纹先沿初始裂纹深度方向在横隔板扩展,再向横隔板厚度方向扩展,焊趾处裂纹先向U肋厚度方向扩展,后沿初始裂纹长度方向顺桥向扩展;在初始裂纹尺寸与荷载条件相同的情况下,顶板-U肋焊缝焊趾处裂纹扩展速度大于焊根处裂纹扩展速度,横隔板-U肋焊缝焊趾处裂纹扩展速率大于横隔板焊趾处裂纹扩展速率。  相似文献   

20.
横隔板开孔和U肋与横隔板连接焊缝端头部位是正交异性钢桥面板的疲劳敏感部位,容易过早、过多地出现疲劳裂纹。为了研究疲劳裂纹产生的原因,以某钢箱梁悬索桥为背景,针对其正交异性钢桥面板制作节段模型进行疲劳试验和扩展有限元分析,考虑横隔板面外变形的影响,研究横隔板开孔部位、U肋与横隔板连接焊缝端头部位疲劳裂纹的产生和扩展。结果表明:节段模型经200万次疲劳荷载作用后,横隔板开孔处出现长7.5mm的裂纹,260万次后扩展到31mm;考虑顶板和横隔板之间的相对水平位移(1.21mm)时,各测点的面内应力计算值与实测值整体吻合良好;横隔板开孔断面最小处的应力达60 MPa,热点应力达到或超过该细节的常幅疲劳极限70MPa,在此处产生裂纹;横隔板的面外变形是诱发横隔板开孔处裂纹的根本原因,热点应力和结构缺陷促使了裂纹的产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号