首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
针对某斜拉桥钢箱梁纵向U肋与横隔板槽口两边间隙不一的问题,根据U肋槽口间隙焊缝间隙的大小制订3种处治方案;考虑到槽口改变对近处轮载应力影响较大,利用ABAQUS建立空间实体有限元模型,分析了在轮载效应下3种处治方案的弧形切口位置处及横隔板切割处的应力分布状况。结果表明,按处治方案进行槽口整改,对整改区域附近横隔板轮载应力的影响稍大,且使主拉应力有所减少(减少约10%),对稍远处轮载应力的影响较小(小于1%),对疲劳寿命的影响可忽略不计;横隔板整改切割线处的应力水平较低(小于10 MPa),且垂直于切割线方向的正应力大部分为压应力,该处焊缝的疲劳强度满足规范要求。  相似文献   

2.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

3.
为了解决栓接U肋对接偏差引起的纵向力流传递不畅、偏差处纵肋腹板及拼接板抗疲劳性能不佳的问题,以某栓接U肋的钢箱梁斜拉桥为工程背景,进行了U肋栓接邻近区轮载应力和对接偏差影响分析,以及非栓接邻近区(相当于嵌补段焊接U肋对接处)的轮载应力分析。根据已有疲劳寿命曲线和所选取的等效损伤系数,进行了疲劳强度验算与寿命预测。根据所得上述两区域不利轮载应力与相应疲劳强度,基于提出的"应强比"指标,比较了不同连接方式下U肋的疲劳性能。研究并提出了疲劳性能不满足要求的拼接板改进方法。结果表明:栓接U肋中U肋腹板的抗疲劳性能优于嵌补段焊接连接U肋,但其常规设计的拼接板抗疲劳性能不及嵌补段U肋,即使在无对接偏差的情况下。栓接接头应力峰值集中在无填充板侧拼接板下缘各螺栓孔附近,整体上由纵向接头中点往两端递减,且在紧靠接头的第一排螺栓孔处的紧邻U肋腹板层拼接板下缘达到最大值。"当U肋对接偏差不超过3 mm时,宜采用强制矫正方式"的规范规定合理。拼接板应力随对接偏差(填充板厚度)增大而增大,偏差大于3 mm时,呈非线性急剧增加。对于背景工程,当U肋对接偏差为5~6 mm时,可将外侧拼接板由180 mm宽加至210 mm;当其为7~9 mm时,两外侧拼接板均应采用536 mm×210 mm×120 mm×12 mm的L形拼接板。  相似文献   

4.
基于热弹塑性有限元法,采用ANSYS软件,以镦边U肋与顶板连接处焊缝为研究对象,运用生死单元技术,模拟镦边U肋加劲钢桥面板的焊接温度场与应力场,并分析其焊接残余应力的大小与分布规律。结果表明:焊缝附近应力梯度大,存在较大的残余拉应力,拉应力峰值约为1.16f y;远离焊缝处,顶板存在0.23fy左右分布均匀的压应力,U肋最大压应力为0.09fy;设计时应考虑残余应力对结构性能的影响,尤其是疲劳问题。  相似文献   

5.
为研究超大跨径斜拉桥钢桥面板的疲劳损伤问题,本文以某斜拉桥为工程背景,对实桥进行了现场疲劳损伤监测与分析,并基于断裂力学的三维裂纹扩展模型,对钢箱梁顶板-U肋和横隔板-U肋等焊接细节进行了数值仿真与研究。结果表明:实桥顶板-U肋焊缝细节高应力幅(大于10MPa)循环次数与疲劳损伤度明显低于横隔板-U肋细节,横隔板-U肋焊缝最大应力幅达到75~90MPa,顶板-U肋焊缝最大应力幅为15~30MPa,横隔板-U肋焊缝细节处裂纹数量远大于顶板-U肋焊缝细节处裂纹数量;顶板-U肋焊缝裂纹在扩展过程中基本保持平面,裂纹扩展有先沿焊缝方向纵向扩展,再向深度方向扩展的趋势;横隔板-U肋焊缝焊趾处裂纹先沿初始裂纹深度方向在横隔板扩展,再向横隔板厚度方向扩展,焊趾处裂纹先向U肋厚度方向扩展,后沿初始裂纹长度方向顺桥向扩展;在初始裂纹尺寸与荷载条件相同的情况下,顶板-U肋焊缝焊趾处裂纹扩展速度大于焊根处裂纹扩展速度,横隔板-U肋焊缝焊趾处裂纹扩展速率大于横隔板焊趾处裂纹扩展速率。  相似文献   

6.
为研究钢箱梁正交异性桥面板横隔板与U肋交接处的残余应力分布规律,采用Abaqus有限元软件模拟横隔板的热切割和焊接过程,分析横隔板与U肋交接处热残余应力的分布特征,探讨切割速度和焊接速度对横隔板弧形切口处残余应力的影响。结果表明:横隔板弧形切口处产生切向残余拉应力,其值超过钢材屈服强度;焊接在横隔板与U肋焊接区局部范围引起沿焊缝方向的残余拉应力,且焊缝尾端的应力集中更为明显;弧形切口残余应力区宽度随切割速度的增加而减小,残余拉应力随焊接速度的增加而增大;选用较快的横隔板切割速度和较慢的焊接速度可减小弧形切口处残余应力分布宽度和应力值。  相似文献   

7.
为了研究钢箱梁的疲劳性能,以某斜拉桥为背景,建立局部有限元模型,利用热点应力法,针对其钢箱梁三种方案的弧形切口及纵肋与横隔板焊缝处的疲劳细节进行计算分析。结果表明:对于纵肋与横隔板焊缝处的疲劳细节,采用6cm厚STC层应力幅改善作用最大,降幅为39%~69%,增加顶板和横隔板板厚最大降幅为19%;对于弧形切口疲劳细节,采用STC层应力幅降幅为14%~33%,增加顶板和横隔板板厚降幅为16%~45%。研究结果可为正交异性板的设计和疲劳分析提供参考。  相似文献   

8.
钢-UHPC组合桥面移动车辆加载试验研究   总被引:1,自引:0,他引:1  
随着公路交通运输的发展,车辆荷载不断提高,导致钢桥面板疲劳问题日益突出,尤其是对桥面系安全使用危害很大的顶板疲劳开裂问题。采用超高性能混凝土(UHPC)形成钢-UHPC组合桥面,因有望解决该类疲劳问题而成为近年来的研究热点。以武汉军山大桥改造工程为背景,利用工程现场的运输卡车,开展了钢-UHPC组合桥面移动车辆加载试验研究。试验结果表明:顶板与U肋连接处疲劳细节控制测点应力幅约为改造前的1/4~1/10,U肋与横隔板连接处疲劳细节DPS01.1控制测点应力幅约为改造前的1/10;疲劳细节C.6多轴疲劳效应显著,疲劳细节C.6.1控制测点应力幅约改造前的26%~29%;其余疲劳细节控制测点应力幅普遍约为改造前的1/2,U肋嵌补段疲劳细节UU01控制测点应力幅约为改造前的1/2。若大桥原钢桥面板抗疲劳设计寿命按5年计,则改造后有望解决其顶板疲劳开裂问题。  相似文献   

9.
为了进行钢桥面板U肋焊接残余应力精确计算及影响因素定量分析,以星海湾跨海大桥钢桥面板U肋为研究对象,在ABAQUS有限元软件中,建立钢桥面板U肋局部模型,通过自编的Dflux子程序,进行双椭球热源的加载,模拟V型坡口焊的焊接过程,得到顶板与U肋板残余应力分布,从而研究顶板板厚与焊接坡口角度2种因素对U肋焊接残余应力的影响。结果表明:本文的分析方法得到的焊接残余应力计算结果与前人试验数据结果对比,两者吻合较好,本文分析方法有效;顶板与U肋板在靠近焊缝处都出现最大残余拉应力,且均超过材料的屈服极限;随着顶板板厚增大,顶板与U肋板的残余拉应力峰值增大;而随着坡口角度增大,顶板与U肋板的残余拉应力峰值则减小。  相似文献   

10.
为综合解决正交异性钢桥面板疲劳开裂和铺装层易损的难题,提出了由正交异性钢桥面板与薄层超高韧性混凝土STC组合而成的轻型组合桥面板结构。由于STC层显著提高了桥面板的刚度,因此可对结构进行优化。在带U肋轻型组合桥面板的基础上,提出了带大U肋的轻型组合桥面板方案。将此方案拟应用于某大桥,与原结构相比,用钢量基本不变,而面板-U肋-隔板三者间焊缝总长度减少36%,不仅降低了施工难度,也减少了焊接缺陷,进一步解决了钢桥面板疲劳开裂的问题。采用4种不同的结构体系,建立了钢箱梁节段有限元模型,基于热点应力法,对体系的6个典型疲劳细节进行疲劳验算。结果表明:在大U肋轻型组合桥面板中,6个疲劳细节的应力水平与传统U肋轻型组合桥面板接近,降幅效果基本一致;同时,通过计算说明了大U肋轻型组合桥面板具有良好的横向受力性能,其栓钉也具有足够的抗疲劳性能。为探究此轻型组合桥面板STC层的纵向弯拉性能,开展了负弯矩条带足尺试验,确定大U肋轻型组合桥面板的STC顶层名义开裂应力为24.1 MPa,远超STC层计算最大拉应力10.92 MPa。以上分析初步表明:带大U肋的轻型组合桥面板有较好的疲劳和静力性能。  相似文献   

11.
为了解车轮荷载作用对正交异性钢桥面板典型疲劳细节的影响,以长门特大桥为背景,采用有限元法建立正交异性钢桥面板节段模型及易开裂部位的子模型,分析在不同横向荷载分布下3处典型疲劳细节受力及面内外变形,得到各细节最不利加载位置。对最不利位置进行加载,分析疲劳裂纹尖端应力强度因子变化规律,研究不同疲劳细节裂纹类型及扩展能力。结果表明:单轮荷载作用下,横隔板弧形缺口位置会发生面内外变形,顶板-U肋焊根处以面外变形为主,横隔板间的顶板-U肋焊缝焊根位置面外变形最大。在裂纹较短时,随着长度的增加,弧形缺口裂纹从张开型裂纹逐渐转向张开型、滑开型混合裂纹,且横隔板处的顶板-U肋焊根裂纹为复合型裂纹,横隔板间的顶板-U肋焊根裂纹为张开型裂纹。横隔板弧形缺口裂纹和顶板-U肋焊缝焊根裂纹的尖端应力强度因子的最大值,分别出现在裂纹长度为20 mm和40 mm附近,该处裂纹较容易继续扩展。  相似文献   

12.
崇启大桥主桥采用(102+4×185+102)m六跨变截面钢箱连续梁桥,主桥钢箱梁最高达9 m.在该桥高腹板设计过程中,对国内、外相关标准和规范进行研究,制定高腹板结构设计和验算思路.腹板在顺桥向不同区段采用4种不同的板厚,在箱梁内侧保持平齐.腹板横肋纵向间距1.4m,加劲肋均采用T形构造;腹板纵肋采用扁钢构造.墩顶附近梁段靠近底板的腹板纵肋与横肋焊接,其余部位腹板纵肋在横肋处断开.按照规范方法对腹板强度、最小厚度及纵肋设置位置合理性、纵肋刚度、横肋间距和刚度、区格局部稳定性进行验算,并采用ANSYS建立半桥板单元模型,对腹板强度和局部稳定性进行校核,结果表明,腹板设计满足规范要求.  相似文献   

13.
某跨江大桥为主跨460m的斜拉桥,运营多年后正交异性板钢箱梁出现大量裂纹,提出采用超高性能混凝土(UHPC)组合桥面(由配钢筋网的UHPC层与钢桥面板通过短栓钉组合而成)进行改造。为选择合适的改造方案,采用有限元法建立原钢箱梁和UHPC组合桥面钢箱梁(UHPC层厚4.5,5.5,6.0cm)模型,分析各疲劳细节应力及UHPC层应力;开展UHPC层配置钢板条的组合结构模型试验,验证其疲劳性能。结果表明:UHPC组合桥面降低了钢箱梁各疲劳细节最大应力幅,降幅为11%~88%,顶板疲劳细节处裂纹尖端最大应力幅降幅达92%;疲劳荷载作用下,UHPC层顶面应力较低,钢桥面板开裂后UHPC层底面应力较大;采用钢板条对5.5cm厚UHPC层的组合结构加强后,UHPC层名义开裂应力达43.2MPa,200万次疲劳寿命达22.1MPa,疲劳性能满足要求,选择该方案进行改造。  相似文献   

14.
三跨钢-混混合连续梁桥结合段传力性能研究   总被引:1,自引:0,他引:1  
G318国道长桥大桥主桥为三跨钢—混混合连续梁航道桥,该桥钢—混结合段在预应力混凝土箱梁侧预埋钢接头与钢箱梁焊接.为研究该桥钢—混结合段传力性能,采用有限元软件MIDAS FEA建立钢—混结合段有限元模型,对结合面钢箱梁侧腹板、结合部分混凝土及预埋钢板顶底面、钢接头部位进行应力分析.分析结果表明:该桥钢—混结合面钢箱梁侧腹板处于较好的工作状态;钢—混结合部分传力性能良好;钢—混结合部分传力机理为当弯矩荷载传递到钢垫板时,荷载主要由预埋钢接头的上、下缘承担,然后荷载通过钢板传递到混凝土,钢接头中的PBL开孔板及钢横隔板传力作用不明显.  相似文献   

15.
根据国内外钢箱梁的设计经验,选取3种不同的横隔板设置形式,通过有限元方法建立钢箱梁的空间有限元模型,计算横隔板与U肋相交的桥面板、U形加劲肋的对接处、横隔板过焊孔处等4种构造细节在车轮荷栽作用下的应力幅,得出横隔板设置形式对桥面板疲劳应力幅的影响.  相似文献   

16.
波纹钢腹板预应力组合箱梁桥的设计计算分析   总被引:1,自引:0,他引:1  
针对目前国内跨度最大的波纹钢腹板预应力组合箱梁桥——三道河中桥,对其箱梁主体、波纹钢腹板、剪力连接键及预应力布置等方面的设计及构造细节进行了介绍;并采用ANSYS建立了其空间有限元模型,参照现行的桥梁设计规范对其设计计算过程中的截面受力、波纹钢腹板的受力、剪力连接键的抗剪能力以及主梁变形等关键性问题进行了详细的阐述。计算结果表明,在正常使用极限状态下,混凝土顶底板的应力、波纹钢腹板剪应力及主梁挠度满足要求,且波纹钢腹板不会在其发生剪切屈服之前而发生局部屈曲、整体屈曲或合成屈曲破坏;在承载能力极限状态下,主梁承载能力满足要求;剪力连接键的抗剪能力满足要求且具有较大的安全储备。可为今后波纹钢腹板预应力组合梁桥的设计计算提供参考。  相似文献   

17.
某大跨度铁路桥位于强震山区,采用主跨1060 m的上承式钢桁梁悬索桥,主桁采用华伦式桁架,桁宽30 m、桁高12 m,节间长10 m。结合强震山区铁路悬索桥的受力特点,加劲梁约束体系采用塔梁分离、塔墩固结的半飘浮体系,桥塔处纵向阻尼器与下平联设置在同一平面,桥塔和桥台处均设置相互协调工作的横向支座与横向阻尼器,并设置地震反压结构,在桥台端横梁中央设置局部受压支座,解决了大跨度铁路悬索桥抗强震、大风作用及轨道局部平顺性问题。钢桁梁主要构件采用Q370qD钢,局部构件采用Q500qD钢,主桁杆件和联结系杆件分别采用M30和M24高强度螺栓连接。加劲梁主桁上弦杆采用箱形截面杆件、焊接整体节点,下弦杆主要采用H形截面杆件、拆装式节点;上层通过交叉平联使箱形弦杆与钢桥面组成整体断面共同受力,下层采用H形弦杆与交叉平联组成镂空层,采用斜杆受拉为主的横联,解决了铁路悬索桥钢梁的疲劳问题,同时具有较好的经济性。结合场地及运输条件,加劲梁分区段采用顶推、原位拼装、缆索吊结合的方案施工,解决了山区大跨度悬索桥的施工难题。  相似文献   

18.
珠江黄埔大桥北汊桥主梁采用扁平钢箱梁,结合该工程,采用混合有限元方法计算钢箱梁的受力,得到钢主梁板件的应力,分析箱梁顶板和底板应力分布的不均匀性,揭示斜拉桥中扁平钢箱梁的应力分布特点。  相似文献   

19.
季云峰  倪迪 《城市道桥与防洪》2020,(11):107-109, 142
以某大跨径斜拉桥为研究背景,基于钢箱梁的定期检测结果,研究了该斜拉桥的钢结构疲劳性能。在疲劳开裂较严重的顶板与U肋焊接细节、关键受力部位的底板与U肋焊接细节、索梁锚固区焊接细节布置传感器,测试各主要焊接细节的疲劳应力历程,基于雨流计数法获得疲劳应力谱。分析结果表明:苏通大桥目前的交通流量远大于2010年前的交通流量;钢箱梁底板与U肋焊接细节、索梁锚固区锚固板与外腹板焊接细节的疲劳寿命评估结果大于设计使用年限;若不计焊接初始缺陷与焊接残余应力,顶板与U肋焊接细节不会过早地发生疲劳破坏。  相似文献   

20.
黄权锋 《城市道桥与防洪》2021,(5):102-103,138
目前国内大多数钢箱梁结构的柔性铺装在使用过程中均出现了铺装层开裂、脱粘、车辙、坑槽等病害,且正交异性钢桥面出现了包括纵肋-面板连接处疲劳开裂、纵肋-横隔板连接处疲劳开裂、横隔板弧形切口处疲劳开裂、纵肋拼接焊缝处疲劳开裂等病害.为避免这些病害情况的产生,采用了钢-超高韧性混凝土(STC)轻型组合桥面铺装型式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号