首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
重点分析应答器天线安装导致的BSA问题,通过对CRH2型车及CRH3型车安装对比分析,转向架振动分析以及实验测试,从而为高速列车在应答器天线安装方面提供经验和帮助。  相似文献   

2.
高速列车气动阻力分布特性研究   总被引:2,自引:0,他引:2  
针对由8辆车组成的CRH3型动车组的实际外形,生成约1.6亿个计算网格,采用大规模并行计算,模拟单列高速列车在明线轨道上以350km/h速度运行时的气流流场,并对列车各组成部分的气动阻力特性进行统计和归类,给出各部件气动阻力对列车总气动阻力的贡献,为高速列车局部减阻优化设计提供参考。  相似文献   

3.
本文采用高速列车模型开展减小空气阻力措施的风洞试验研究,对采用不同减小空气阻力措施的高速列车模型的空气阻力特性进行对比分析,得到不同减小空气阻力措施的减阻效果。研究结果表明:在侧偏角为0°状态(列车直行和无侧风状态)下,在车顶采用优化空调导流罩3减阻效果最好,全车减阻效果可达4.59%;车身侧面裙板包住转向架外露的部分越多越有利于减小空气阻力;全封闭外风挡与半封闭外风挡的减阻效果相当;在车底部转向架周围空腔安装底部导流板2的减阻效果最好,全车减阻效果可达3.7%。通过对高速列车减小空气阻力措施的风洞试验研究,为高速列车减小空气阻力和外形优化提供了参考依据。  相似文献   

4.
采用计算流体力学方法,研究高速列车表面边界层演变特性以及气动阻力分布规律;通过在列车头车和尾车边界层分离点区域设置抽吸气孔,提出表面抽吸气边界层控制减阻方案,并评估其减阻效果。结果表明:头车和尾车边界层分离点区域分别设置抽吸气孔后,整车气动阻力系数均减小,最大减阻率可达6%。此项研究为高速列车气动减阻提供了新思路,对克服由于空气动力效应带来的提速瓶颈、节约能源具有重要意义。  相似文献   

5.
<正>张雷,男,高级工程师,高速列车主管设计师,长期从事轨道车辆的工程技术研究与创新实践,是国产时速350 km CRH3型动车组和时速380 km CRH380BL型高速动车组以及高速智能列车项目总体技术主管。近年来主要荣誉:2010年荣获中国北车劳动奖章和中国北车劳动模范;同年获得中国专利优秀奖;  相似文献   

6.
介绍高速铁路列车接近锁闭区段长度的计算模型,并在CTCS-2级和CTCS-3级列控系统下,计算CRH2型和CRH3型动车组在不同坡道下的最短接近锁闭区段长度和人工解锁进路的最短延迟解锁时间.最后为满足列车高效运行的安全性,还提出应尽快修订《列车牵引计算规程》,补充高速列车的运行参数和在部级颁发的有关文件中,明确列车最大常用制动距离限值的建议.  相似文献   

7.
<正>张雷,男,高级工程师,高速列车主管设计师,长期从事轨道车辆的工程技术研究与创新实践,是国产时速350 km CRH3型动车组和时速380 km CRH380BL型高速动车组以及高速智能列车项目总体技术主管。近年来主要荣誉:2010年荣获中国北车劳动奖章和中国北车劳动模范;同年获得中国专利优秀奖;  相似文献   

8.
列车在高速会车时产生的空气压力波会给交会车辆的侧窗造成很大的冲击,有可能出现破窗事故,给乘客和列车运行带来安全隐患。基于三维、非定常两方程湍流模型,利用计算流体软件Fluent,对某型地铁车辆与不同型号的铁路高速列车(CRH380A、CRH2、CRH3型)交会时的空气动力学性能进行了数值仿真,得到侧窗上的会车压力波变化曲线。仿真计算结果表明:在地铁列车与铁路高速列车的交会过程中,地铁列车所受到的侧力远大于高速铁路列车所受到的侧力,交会产生的瞬变压力波对地铁列车侧窗的影响也更大。当地铁列车与CRH380A型高速列车交会时,与其和其它两种型号的列车交会相比,地铁列车侧窗所受到的压力波幅值最小,而当地铁列车与CRH2型铁路列车或CRH3型铁路列车交会时,地铁列车侧窗所受到的压力波幅值均较大,其波动的峰峰值也更大。  相似文献   

9.
高速列车整车气动噪声及分布规律研究   总被引:1,自引:0,他引:1  
本文建立包括头车、尾车、中间车、受电弓、转向架在内的CRH3型高速列车整车三维绕流流动的数值计算模型,用Fluent软件计算不同速度的外部稳态流场,基于稳态流场结果,使用宽频带噪声源模型计算车身表面气动噪声源,得到车体表面声功率级分布;以稳态流场为初始值,用大涡模拟计算车外部瞬态流场,基于瞬态流场用FW-H噪声模型预测高速列车辐射的远场噪声;分析车体表面声功率级和远场总声压级的分布规律,并将车体侧面远场噪声计算结果与试验结果进行比较分析。结果表明:列车高速运行时的气动噪声源主要是迎风侧车头及受电弓等曲率变化较大的曲面,受电弓滑板表面声功率级最大,高于头车头部15dB;从总声压级来看,受电弓滑板、头车第一个转向架和头车鼻尖处总声压级分别为160dB、135dB、130dB,受电弓滑板处具有最大的总声压级;从车体侧面噪声来看,离地面越近噪声越大。通过将远场噪声计算结果与噪声测试结果的对比证明了本文计算结果的准确性。  相似文献   

10.
高速列车头车外形结构优化风洞试验研究   总被引:1,自引:0,他引:1  
我国最新一代高速列车为CRH380A,最高运营时速为350 km/h。现以500 km/h的高速列车为研究背景,对CRH380A高速列车头车外形结构进行优化,在中国空气动力研究与发展中心低速空气动力研究所的8 m×6 m风洞中对四种不同优化方案的高速列车头车的气动特性及其对有限编组列车气动性能的影响进行试验研究。试验结果表明:当侧偏角为0°时,在35~70 m/s的试验风速范围内,风速的变化对头型NEW-A的气动特性的影响很小;当侧偏角不变时,模型NEW-A的头车、中间车和尾车气动阻力最小,4种头型当中NEW-A头型的空气动力性能最好。  相似文献   

11.
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明:列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善了底部区域部件气动特性。  相似文献   

12.
在CATIA软件环境中应用NURBS理论完成对CRH1A型动车组三维曲面的建模,使用ICEM CFD软件生成网格,再使用FLUENT软件对其外部流场进行数值计算,分析CRH1A型动车组气动特性后,发现其驾驶室由于曲率过大等因素引起的阻力大、尾流紊乱程度大等问题,因此采用传统的建模方法重新设计列车流线型外形并进行相应的气动特性计算与分析。对照后得出两者的空气阻力头尾车受到的空气阻力所占比例最大,整列列车空气总阻力主要表现为空气压差阻力,重新设计后的列车空气阻力相比CRH1A减小了12.16%。最后比较分析了两种建模方法各自的优缺点,并且提出了根据模型曲面复杂程度选择建模方法的一般性原则。  相似文献   

13.
CRH2型动车组列车交会空气压力波试验分析   总被引:3,自引:0,他引:3  
阐述胶济线CRH2型动车组列车交会空气压力波实车测试情况,对测试结果进行详细分析,并将实车试验结果与数值模拟计算结果进行比较.研究结果表明:250 km/ h等速交会情况下,实车试验测得的车体表面交会压力波最大幅值为1 195 Pa,在铁路线间距为4.4 m的条件下不会对列车运行安全产生影响;车厢内最大压力变化幅值为19 Pa,仅为车体表面压力变化幅值的1.6%,车厢内产生的压力变化幅值不会对乘客舒适性产生影响;在4.4 m线间距情况下,被测试的CHR2型动车组上的交会压力波幅值近似与同型号等速交会动车组运行速度的平方成正比;数值计算与实车试验得到的规律基本吻合,计算与试验结果相差5.15%,数值计算结果可信.  相似文献   

14.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

15.
高速列车的动态环境及其技术的根本特点   总被引:8,自引:1,他引:7  
讨论了高速列车所处的动态环境。指出高速列车与普通列车的根本不同在于列车所处的动态环境发生了质的变化,由机械、电气作用为主,变为以气动作用为主。正是由于这一巨大变化,才产生了一系列高速列车技术的特点。例如,由于需要特大牵引功率来克服地表稠密大气所产生的阻力,高速列车必须放弃机车牵引,采用动车组模式;对高速列车必须进行“噪声设计”,才能分别按环保要求决定高速通道不同区段的最高限制速度。本文根据上述观点得出一些不同于通常所理解的关于地面高速交通的结论。比如:指出磁浮列车只有在低速下运行,才能凸显其低噪声的优点,高速度并不是它的特长。本文还进一步指出,地面开敞式高速交通,最高速度不宜高于400 km/h,超过这一限速必须采用真空管道高速交通。  相似文献   

16.
高速铁路列车运行噪声特性研究   总被引:3,自引:0,他引:3  
在对我国高速铁路噪声实测的基础上,分析了我国高速铁路噪声的特性。动车组高速运行时,在桥梁区段峰值均出现在低频段(f=31.5~63Hz);路基区段的噪声频谱呈宽频特性,在低频段(f=31.5—63Hz)和中高频段(f=500—8000Hz)声能量均较为集中。高速铁路列车辐射噪声随速度的关系式与国外辐射噪声随速度的关系基本一致,当高速动车组运行速度大于300km/h后,轮轨噪声、空气动力噪声和集电系统噪声成为主要声源。高速列车辐射噪声几何衰减基本遵守距离加倍,声级衰减3—4dB(A)的规律。  相似文献   

17.
为实现不同速度等级、不同运用环境下高速列车的快速设计、快速制造以及保证谱系产品的健康运营和管理,提出并构建由数据平台、设计平台、制造平台和健康管理平台组成的面向故障预测与健康管理(PHM)的高速列车谱系化产品技术平台。首先,剖析高速列车谱系化与健康管理平台的融合机制,集成零部件研制与使用阶段的研发数据;其次,从技术架构设计和逻辑架构设计2个方面,基于数据挖掘、模块化、元模型、定制设计以及PHM等技术,开发面向PHM的高速列车谱系化产品技术平台;最后,以时速200~400 km的CRH6,CRH380A,CR300AF,CR400AF动车组系列产品为例,对平台进行工程实践,验证该平台的有效性。结果表明:该平台能够提升产品的研制效率,满足市场的多样化需求,并保障复杂环境下高速列车的健康运营,提升高速列车的运用效率和运营品质。  相似文献   

18.
针对高速道岔直尖轨非工作边表面出现纵向裂纹的问题,通过建立车辆道岔多体动力学模型和三维弹塑性轮轨接触有限元模型,分析倒圆弧半径对直尖轨等效应力及其作用位置的影响。结果表明:尖轨顶宽30mm到顶宽40mm断面间易发生非工作边表面裂纹,其中顶宽35mm断面的受力状态最为不利;倒圆弧半径取值越大,对尖轨降低值的影响越大,为降低对车辆轨道动力性能的影响,在相同条件下,应尽可能选择较小半径的倒圆弧;直尖轨倒圆弧能够有效降低内部的等效应力,并能增大应力作用位置到非工作边的距离;综合考虑直尖轨降低值和受力状态,倒圆弧半径取3mm时优于其他半径取值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号