首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为满足交通规划对环境影响评价中交通排放的定量评估要求,分析了交通规划阶段对交通排放模型的需求。根据对交通排放测算模型和其与交通规划模型的对接研究,设计了中国机动车排放模型(China Vehicle Emission Model, CVEM) 在交通规划环境评价中的应用方法,从模型结构和参数设置、排放因子修正和与交通规划模型对接方法三方面展开。其中,对接方法根据交通规划模型输出结果为交通量或周转量分开进行设计。最后,以成渝城市群综合交通规划为例,应用CVEM排放模型对规划方案进行交通排放评估。结果显示:CVEM排放模型能够反映成渝城市群不同规划方案的排放评估差异。污染物排放总量随着方案中公路运输周转量占比的降低而降低。利用交通排放的空间分布,可以分线路、分客货运测算污染物排放,从而能进一步结合规划方案开展交通策略研究。  相似文献   

2.
缓解拥堵项目可减少温室气体排放,但基于单个变量(如仅基于出行距离)的CO2排放预测并不精确.为了准确预测缓堵项目减少的CO2排放量,利用车辆运行检测技术、车辆活动数据库及根据车辆类型设计的排放模型,通过分析速度与排放的关系绘制速度-排放曲线,并结合交通运行检测数据,评价缓堵策略、速度管理策略、交通平滑策略等交通运行管理...  相似文献   

3.
为加快推进绿色交通运输体系建设,通过借鉴国内外交通温室气体排放清单的研究和应用 经验,分析了国内外城市客运温室气体排放清单的主要建立方法以及各方法的适用条件和主要特 征。结合我国城市客运发展的现状和基础,提出了适于我国国情的城市客运温室气体排放清单建 立方法,分析了可能的数据来源和排放因子选取,按照全国和各地区(东部、中部和西部以及各 省、自治区、直辖市) 分布,以2010 年为切入点,广泛收集了相关数据,首次研究提出了全国城 市客运温室气体排放清单,系统分析和总结了排放清单的主要特点及地区分布规律,为交通行业 和地区开展节能减排、应对气候变化等研究和管理工作提供重要支撑。  相似文献   

4.
获取车辆的实际运行工况,是准确进行污染物排放测算的关键工作.以韶山为例,通过调查本地驾驶员和外地驾驶员在不同道路类型上驾驶小客车行驶的逐秒GPS数据,统计分析相应的运行工况分布并导入MOVES模型,采用先按类分解再聚类合计的方法测算污染物排放因子,据此评估交通管理与控制策略对污染物排放的影响.研究发现,采用MOVES默认的运行工况分布,得出的排放结果将会产生较大误差;相对于外地驾驶员,韶山本地驾驶员平均车速更高,车辆比功率分布更离散,运行工况的差别使得本地驾驶员的污染物排放因子在所有道路类型上全部高于外地驾驶员,景区道路上高出更多;韶山实施游客换乘方案后, 2016年8月各污染物总减排比例为73%~78%.  相似文献   

5.
由于混合动力汽车与传统燃油车的能耗排放因子具有差异性,导致机动车交通路网能耗排放的量化评估存在不确定性。本文建立混合动力汽车在实际交通状态中的能耗和CO2排放因子测算模型,基于车辆比功率VSP(Vehicle Specific Power)作为车辆行驶状态与能耗排放之间耦合关系的表征参数。通过引入内燃机转速区分内燃机开启和关闭工作状态,并计算内燃机开启状态下VSP对应的平均能耗率,同时,建立能够解析混合动力汽车能耗排放产生机理的VSP分布。通过收集典型行驶工况下车辆测试油耗数据和北京市车辆实际行驶轨迹数据,验证了模型的准确性,并应用模型测算混合动力汽车不同速度区间下的油耗和CO2排放因子。研究结果表明:在城市行驶工况(UDDS)和高速行驶工况(HWY)中,模型测算能耗排放因子与真实值的平均相对误差分别为3.7%和-1.7%,与不考虑内燃机开启状态相比,测算误差减少5.6%和4.3%;在实际交通状态下,采用传统燃油车的测算方法会导致混合动力汽车行驶平均速度为高速区间时油耗和CO2排放量被低估,当行驶平均速度为低速区间时油耗和CO2排放量会被高估。  相似文献   

6.
基于机动车比功率的单点信号配时优化模型   总被引:1,自引:0,他引:1  
为减少车辆延误和交通排放,基于机动车比功率提出信号交叉口红、绿灯期间污染物排放因子的标定方法.根据运筹学和交通流理论,以车辆延误和排放最小为目标建立单点交叉口信号配时优化模型.考虑小汽车尾气中的CO、HC和NOx三种污染物,利用 VISSIM 软件设计交通仿真实验,使用MATLAB软件编制参数标定和模型求解算法,根据车辆行驶状况数据标定每条车道组每种污染物的两类排放因子,并验证双目标信号配时优化模型.结果表明,与仅降低延误相比,双目标优化模型所获最优信号配时方案能使车均延误降低19%、交通排放减少11%.研究成果能有效减少交叉口延误和排放,为建立考虑交通排放的干道信号配时优化模型奠定理论基础.  相似文献   

7.
为评估交通管控策略的潜在环境效益,在交通仿真模型中融合微观车辆排放模型,可仿真估计机动车污染物排放特征.论文比较分析了微观车辆排放模型的基本特点,总结了微观车辆排放模型本地化移植的方法与进展;对宏观、中观、微观多层级交通仿真模型融合微观车辆排放模型的方法进行了综述分析.研究发现,宏观及中观交通仿真模型与微观车辆排放模型的融合方法主要体现在机动车污染物排放因子修正及车流运行轨迹重建上.现有研究者对微观交通仿真模型融合微观车辆排放模型是否能够准确地估计机动车污染物排放特征存在分歧,表现在微观交通仿真模型输出的车辆比功率分布特征与观测的真实值存在不一致性.最后讨论了模型融合应用发展的未来研究方向.该综述对交通仿真模型融合微观车辆排放模型的一体化平台设计具有重要参考价值.  相似文献   

8.
上海市机动车交通排放模型构建   总被引:1,自引:0,他引:1  
机动车交通排放污染状况和减排政策研究是交通和环境研究机构共同关注的内容,而机动车交通排放模型是开展相关工作的基础工具。上海市采用交通研究机构和环境研究机构合作开发的模式,共同开展机动车交通排放模型构建、验证和应用工作。从交通和环保双方的共同需求出发,模型侧重于排放清单核算和政策评估,并预留实时排放测算的功能。上海市机动车交通排放模型对机动车排放因子、运行工况和车辆结构等模型参数进行本地化,并根据排放模型要求对道路交通模型进行深化。上海市机动车交通排放模型已经应用于上海市机动车排放清单制定和各类交通政策的减排效果评估中。  相似文献   

9.
为了降低沥青路面施工过程中能耗及温室气体和污染物排放, 建立了基于离散事件模拟的沥青路面施工环境影响计算模型, 利用概率分布函数和逻辑语句将施工步骤抽象化, 应用图形化离散事件模拟软件构建了沥青路面施工离散事件模型, 将Nonroad计算模型植入, 进行了不同温室气体和污染物的动态计算, 并对比了不同施工情况的模拟排放结果。分析结果表明: 运料车将沥青混合料运输至摊铺现场的过程为沥青路面施工的主要能耗源, 为总能耗的44%, 摊铺过程与运料车返回过程的能源消耗分别为总能耗的32%、12%;温室气体与污染物排放的主要施工步骤为运输和摊铺过程, 占排放总量的50%以上; 摊铺与压实过程产生的排放物主要为NOx, 运输过程产生的排放物主要为CO2; 对施工工艺进行调整, 使用不间断摊铺施工会明显减少NOx的排放, 减排量约为15%;在施工设备方面, 适当增大摊铺设备的容量会减少CO2和HC的排放, 前者减排量约为25%, 后者约为17%。可见, 基于离散事件模拟沥青路面施工环境影响计算模型, 可量化沥青路面施工过程的能耗及温室气体和污染物排放, 优化沥青路面施工技术方案。   相似文献   

10.
城市交通排放高分辨率分析方法研究 ——北京实证   总被引:1,自引:0,他引:1  
交通污染减排政策呈现多样化、精细化和差别化发展趋势,传统交通排放模型在评价范围、评价尺度上的分辨率存在局限性.本文基于实时监测数据的交通流仿真模型、视频检测方法的车队结构分析和本地化工况的速度排放因子修正关系,提出了城市交通排放高分辨率分析方法,时空分辨率达到小时和路段级别,排放源可区分不同交通方式和本地外地.并以北京市机动车 NOx排放为例,对路网交通排放时空分布特征进行实证分析.北京市高峰时段路网交通排放量占全天排放的31.2%;高速路、快速路排放分别占路网排放总量的37.9%和38.8%;五环~六环间排放量占六环内排放总量的38.32%;货运车辆排放占路网排放比例达到47%.本文提出的城市交通排放高分辨率分析方法对精准定位交通污染治理时间、空间和对象,提升精细化决策水平具有一定意义.  相似文献   

11.
速度排放修正因子(Speed Correction Factors,SCF)是评估速度变化对车辆排放影响的重要参数.然而,传统的SCF建立方法耗时长、成本较高,且获取的SCF分辨率较低.为了得到高分辨率的SCF,基于北京市大量的实测工况数据和排放率数据,提出了北京市轻型车SCF的建立方法.首先,对采集的工况数据进行60 s短行程划分及2 km/h行程速度的聚类;在此基础上,建立不同道路类型和速度区间下的比功率分布(Vehicle Specific Power,VSP);然后,结合排放率和建立的VSP分布,建立不同道路类型、排放标准的各污染物的SCF.经过分析,得出相比传统的SCF建立方法,本文提出的方法更能反映车辆的实际行驶特征、且获得的SCF的速度分辨率更高.  相似文献   

12.
交通尾气排放宏观模型是进行广域尾气排放估测的重要工具,其功能是计算国家和区域范围内的有交通排放产生的排放因子与排放清单。目前,中国尚缺乏自己的宏观尾气排放模型,利用国外模型进行尾气排放估算误差较大。基于国内自己的尾气排放数据,利用国外的部分模型数据作为必要的补充,提出并实现了中国宏观尾气排放模型的建模方法与程序设计。首先,在总结国外机动车尾气排放模型优缺点的基础上,确定基于中国城市交通环境的机动车尾气排放宏观模型的目标、结构和建模方法,并对模型关键模块的数据获取、数据分析以及计算流程进行了详细的研究。其次,利用Visual Basic对模型进行了程序开发。最后,对北京市2008年尾气排放对交通环境的影响进行预测,并将其预测结果与MOBILE预测结果进行对比分析。  相似文献   

13.
雾霾对城市交通路网的影响主要包括交通数据缺失、交通安全和污染物排放三大问题.首先,基于城市交通数据监测系统,增加路网模型中驾驶员对能见度因素的反应特性,建立雾霾情况下交通路网模型,包括车道模型和交叉口模型两部分.然后,建立雾霾情况下交通路网模型评价指标,包括路网交通数据缺失率、交通危险系数和路网车辆污染物排放指标.最后,通过雾霾对路网影响程度和影响区域的仿真,得出如下结果:雾霾程度越严重、影响区域范围越大,交通数据缺失率越高,越不利于交通安全,同时污染物排放越多.  相似文献   

14.
北京、上海城市交通能耗和温室气体排放比较   总被引:7,自引:0,他引:7  
朱松丽 《城市交通》2010,8(3):58-63
北京和上海在城市发展阶段、人口规模等方面具有较强可比性,同时实施了既有相同点又有不同点的城市交通政策,对两市的城市交通能耗和温室气体排放进行比较可客观地评价其政策的实施效果。以不同燃料驱动的不同类型车辆的保有量、年均运营距离、能源强度及排放强度为主要参数定量计算2005年两市的城市交通能耗和CO2排放量。结果发现,两市城市交通能耗总量接近,但上海市的能耗强度和温室气体排放强度略低于北京市,这归功于机动车总量控制政策、公共交通优先发展以及广泛使用的非机动交通。但是,近几年上海城市交通的碳排放强度有明显上升趋势,两市的差距可能逐渐减小。最后,就两市在公共交通(尤其是出租汽车)、非机动交通等方面的发展政策给出建议。  相似文献   

15.
基于PEMS的MOBILE与COPERT排放模型对比研究   总被引:3,自引:0,他引:3  
为研究符合我国国情的机动车尾气排放宏观模型,本文首先系统地介绍了MOBILE与COPERT模型的算法原理、特点及应用;然后描述了车载尾气检测设备(PEMS)的数据采集及分析方法,并利用车载尾气设备检测的实测数据对两模型进行了参数校正;最后从排放因子和道路等级角度将两模型输出的预测值与实测值进行了对比分析. 结果表明,在测试车辆总行驶周期内以及各道路等级下,COPERT模型的NOx、HC和CO排放因子预测值较MOBILE模型的预测结果与实测值更为接近;在测试车辆总行驶周期内,前者误差比后者分别小19.2%、40.8%和22.0%. 最后得出结论:在预测中国机动车尾气排放时,COPERT模型较MOBILE模型更为适用.  相似文献   

16.
许多研究表明机动车的尾气排放量与车辆的瞬时速度、加速度密切相关。为了制定控制机动车尾气排放的有效策略,必须建立一个能够模拟车辆瞬间运行状况的微观模拟平台来评估机动车尾气排放。本文结合微观交通模拟模型VISSIM和微观尾气模型CMEM,建立了微观交通尾气模拟平台。选取北京市海淀区的部分主要道路构建实例分析路网,并对其交通运行状况和尾气排放进行评价。本文首先建立了车辆的瞬间尾气排放率、燃料消耗率与瞬时速度、加速度之间的关系;然后,对研究路网的各种车型的尾气排放量进行分析和计算;最后,通过两个假设方案,对不同的交通管理与控制策略对于尾气排放的影响进行分析。  相似文献   

17.
城市单向交通规划方案的能效判别法   总被引:1,自引:0,他引:1  
单向交通组织规划改变了车流原有的运行状态,使得路网中各路段的交通流量和行车速度发生变化,车流在规划区域的能源消耗和废气的排放也要发生相应的变化.在已知规划区域节点0D的条件下,假定影响车辆排放因子的其他因素不改变,通过交通仿真获得单向交通规划方案的各路段的交通流量和运行车速,利用能源消耗模型和车辆排放模型,计算出单向交通和双向交通组织状况下的能源消耗和废气排放量,再运用比值法建立了单向交通规划方案的能效判别模型,对单向交通规划方案的能效进行判别.  相似文献   

18.
在对微观(路段和交叉口)环境交通容量分析的基础上,运用机动车尾气扩散箱型模式建立路段环境交通容量计算模型。考虑满足环境空气质量标准和保证路段的通行能力,本文主要考虑降低机动车污染物排放因子,并得出了相应的计算模型。最后对北京某路段环境交通容量进行初步计算分析。该模型的提出可为城市规划、交通规划和交通管理决策提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号