首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究目的:为研究不同类型单元式无砟轨道无缝线路在大跨桥上的适应性,本文建立无缝线路-无砟轨道-桥梁空间耦合分析模型,对温度荷载作用下CRTSⅠ型和CRTSⅢ型板式无砟轨道各层纵向受力与变形、层间错动位移以及限位结构受力进行对比分析,并对运营过程中可能出现的扣件纵向阻力增加对两种无砟轨道在大跨桥上的适应性进行比较。研究结论:(1)两种无砟轨道无缝线路在连续梁端处受力与变形最大,但二者之间的差异较小;(2)扣件纵向阻力的增加将带来连续梁端位置处无缝线路受力增加,变形量减小;(3)CRTSⅢ型板式无砟轨道层间限位刚度大于CRTSⅠ型板式无砟轨道,因此扣件纵向阻力增加导致的CRTSⅠ型板式无砟轨道层间错动位移增加更加明显;(4)梁端限位结构在升降温过程中纵向受剪明显,其中CRTSⅠ型板式无砟轨道梁端半圆形凸台因单侧承力,纵向剪切效应更加显著,且随桥上扣件纵向阻力的增加而急速增加;(5)总体看来,两种无砟轨道的选用对大跨桥上无缝线路设计的影响基本无差异,但在轨道纵向几何形位保持以及大跨梁端限位结构受力方面,CRTSⅢ型板式无砟轨道表现出了较好的适应性;(6)本研究成果可为今后大跨度桥上板式无砟轨道的选型提供理论指导。  相似文献   

2.
研究目的:大跨桥梁上铺设无砟轨道时,桥梁坡度、桥梁跨度及梁体温度变化会对梁端扣件受力产生影响,本文通过建立坡度桥梁扣件受力分析计算的有限元模型,研究连续桥梁位于坡道上时梁体坡度、梁体温度变化、桥梁温度跨度以及相邻简支梁桥固定支座布设位置对梁端扣件受力的影响。基于线路运行条件下可能发生的不利荷载组合,从扣件受力角度出发,确定不同墩高、不同温度跨度连续梁桥适应的坡度限值,为山区大跨桥梁上的无砟轨道设计提供理论指导。研究结论:(1)考虑坡度上桥梁变形对扣件受力影响时应考虑桥梁坡度对扣件受力方向的影响;(2)坡度桥梁梁缝处扣件受到附加力最大值随着桥梁坡度、温度变化幅度、连续梁温度跨度的增加而呈线性增大,而相邻简支梁固定支座位于下坡段时对扣件受力较为有利;(3)考虑线路运营中出现的最不利荷载组合,从梁端扣件受力不超限出发得到不同桥墩高度、不同温度跨度连续梁桥适应的坡度限值,在梁缝处铺设过渡板时可以大幅度提高连续梁桥适应的坡度限值;(4)该研究成果可用于指导山区铁路桥梁和无砟轨道设计。  相似文献   

3.
研究目的:对高速铁路咽喉区由正线2股道变为站内6股道形成的多股道变化的道岔群进行研究,选择合理的桥梁结构以满足无缝道岔的布置要求。研究结论:通过对无砟轨道无缝线路车站咽喉区道岔连续梁结构形式研究,总结出道岔区桥梁结构形式选择的控制因素;为设计出能满足无砟轨道无缝道岔受力及变形要求的结构需重点解决如下问题:(1)确定无砟轨道无缝道岔对桥梁结构变形及梁缝位置的要求。(2)根据无砟轨道无缝道岔对桥梁结构梁缝处钢轨横向相对位移限值的要求,确定合理的梁跨横向布置。(3)根据确定的梁跨结构形式,建立无缝道岔-桥梁-墩台一体化力学模型,计算岔区轨道、梁体和下部结构的工作状态。(4)做梁部结构整体及局部分析。  相似文献   

4.
研究目的:大跨度桥梁铺设无砟轨道已成为我国扩大无砟轨道应用范围的一大技术难题,本文以崔家营汉江特大桥主桥为工程实例,结合桥梁变形曲线及车桥耦合动力响应分析结果,提出大跨度桥梁铺设无砟轨道技术难点、技术要求以及评价指标,并得出相应的分析结果。研究结论:(1)崔家营汉江特大桥(135+2×300+135) m混凝土刚构拱竖向变形、曲率半径、竖向残余徐变变形、梁端变形、墩台沉降值均满足要求;(2)高速列车作用下桥梁动力响应均满足要求,具有良好的动力特性及列车走行性,安全性和乘坐舒适性均满足要求;(3)温度和徐变作用下竖向变形属于多波不平顺,300 m弦高低不平顺已超出规范允许值;(4)本研究成果可为今后类似大跨度桥梁铺设无砟轨道适应性分析提供参考。  相似文献   

5.
为掌握CRTSⅢ型板式无砟轨道结构的温度场、受力和变形规律,在郑徐高铁跨京杭大运河徐州特大桥的CRTSⅢ型板式无砟轨道结构开展监测服役状态监测的基础上,对监测数据进行了统计分析,研究表明:(1)轨道板板中温度高于自密实混凝土层和底座板;(2)轨道板上半部分温度梯度较大,下半部分温度梯度较小;(3)连续梁跨中地段轨道板板端翘曲位移高于板中翘曲位移,板端最高翘曲位移为1.9mm。连续梁梁端地段轨道板板端翘曲位移与板中翘曲位移接近;(4)随着大气温度的升高,桥梁梁缝的相对位移值逐渐减小;(5)轨道板压应力、拉应力大小变化随着温度的升高和降低而相应发生变化。  相似文献   

6.
无砟高铁桥梁墩台不均匀沉降超过规定的限值,会直接影响到轨道平顺性,对于连续梁,还将引起支座反力变化、内力重分配等问题,可能会造成梁体损坏,必须尽快采取措施恢复桥梁线型及轨道平顺性。  相似文献   

7.
研究目的:既有桥上纵连板式无砟轨道研究多考虑桥梁整体温度变化而忽略温度梯度的影响,为探明高速铁路大跨度桥上纵连板式无砟轨道系统受力规律,本文基于长期实测温度场数据,利用统计方法获得结构具有概率保证的非线性温度模式,建立考虑钢轨-轨道板-底座板-梁体-桥墩的空间一体化有限元模型,选取沪昆客运专线某大跨连续梁桥工程实例,计算分析实测非线性温度模式下桥上各层轨道结构相对位移以及钢轨纵向附加力的分布规律。研究结论:(1)只考虑轨道板及底座板实测温度模式时,钢轨附加应力基本为0;(2)桥梁温度梯度会引起梁缝处钢轨附加应力的急剧增大,在研究桥上纵连板式无砟轨道时需考虑桥梁温度梯度的影响;(3)大跨度连续梁桥固结机构处水泥沥青砂浆变形会超过其实测极限变形位移,建议在连续梁固结机构上方同样设置剪力钢筋;(4)无砟轨道断板会导致钢轨附加应力急剧增大,因此应严格限制纵连板式无砟轨道断裂的发生,若需更换轨道板及底座板时,应在合龙温度范围进行更换;(5)本研究结果可为大跨度桥上纵连板式无砟轨道的设计与改进提供参考。  相似文献   

8.
研究目的:桥上无缝线路受力比较复杂,桥梁、轨道结构的受力变形成为广泛关注的问题。为研究列车荷载作用下桥上轨道结构的受力变形规律及影响因素,根据多跨简支梁桥上单元板式无砟轨道无缝线路的结构特点,基于有限元法建立多跨简支梁桥上CRTSⅠ型板式无砟轨道无缝线路空间耦合模型,计算列车荷载作用下桥上轨道结构的挠曲力与位移,并分析扣件纵向阻力、墩台顶固定支座纵向水平线刚度以及桥梁跨数等因素对挠曲受力与变形的影响规律。研究结论:(1)在列车荷载作用下,钢轨挠曲拉力及压力最大值分别出现在左侧桥台固定端与最后一跨跨中位置,钢轨位移呈先增后减的趋势,并在两侧路基段逐渐减小至零;(2)采用小阻力扣件可明显降低钢轨及轨道结构的受力,但同时会增加轨板相对位移,需要重点关注钢轨在桥台处的爬行;(3)采用较大纵向水平线刚度的低墩桥对列车荷载作用下桥上轨道结构纵向位移而言是不利的;(4)随着桥梁跨数的增加,轨道结构的纵向力与位移也不断增大,在6跨之前增幅明显,6跨之后增幅明显放缓并逐渐趋于平稳;(5)本研究成果对桥上CRTSⅠ型板式无砟轨道的设计及结构安全性具有参考价值。  相似文献   

9.
研究目的:大跨度混凝土桥上铺设无砟轨道和无缝线路是我国客运专线建设的关键技术之一,对桥梁和轨道工程都是一个严峻考验。对于长大混凝土桥上无缝线路,是否设置钢轨伸缩调节器是困扰长大混凝土桥上无缝线路设计的难题。本文对我国大跨度桥梁无砟轨道无缝线路设计进行研究分析。研究结论:通过对我国大跨度桥梁无砟轨道无缝线路设计研究分析和既有长大混凝土桥梁工点无砟轨道无缝线路运营情况现场调研发现;(1)铺设无砟轨道的大跨度混凝土桥梁温度跨度超过一定范围将引起轨道结构的病害;(2)通过在桥上采用小阻力扣件即减小桥上扣件的纵向阻力,可以降低钢轨最大纵向附加力及轨道结构的受力;(3)随着桥梁温差取值的增大,钢轨与桥墩受力及轨道和桥梁结构的变形都有明显增大;(4)必须加大大跨度桥上无缝线路监测的力度,加强无缝线路设计参数的试验研究。  相似文献   

10.
现行TB10015—2012《铁路无缝线路设计规范》中断轨力取值偏于保守,往往限制桥梁设计。以铁路常用的16,20,24,32,40 m简支梁为研究对象,建立钢轨-桥梁-桥梁墩台三维有限元空间力学计算模型。考虑无砟及有砟轨道类型、不同简支梁墩台刚度,分别模拟计算双线4根钢轨折断、单根钢轨折断工况下的墩台断轨力,在此基础上,提出简支梁断轨力计算公式修正系数。研究结果表明,墩台刚度接近刚性时,16m, 40m跨长简支梁修正系数分别为规范值的0.98, 0.8倍,即简支梁跨长越长,修正系数越小;40m跨长简支梁在铺设无砟轨道、有砟轨道的修正系数分别为规范值的0.8, 0.9倍,即相同跨长简支梁下,无砟轨道修正系数小于有砟轨道。  相似文献   

11.
本文通过对高速铁路多联大跨连续梁桥上无缝线路设计方案的研究,提出高速铁路多联大跨连续梁桥上无砟无缝线路设计原则及设计方案。研究结果表明:多联大跨连续梁桥上无砟无缝线路设计应优先通过调整固定支座位置,减小桥梁温度跨度,且使各温度跨度尽量均匀分布,以达到不设钢轨伸缩调节器并使桥梁墩台受力不至于过大的目的;必须设置钢轨伸缩调节器时,应对其设置数量进行优化,以尽量少设钢轨伸缩调节器。梁端设置伸缩调节器时,应优先采用单向钢轨伸缩调节器。  相似文献   

12.
研究目的:连续梁桥变形引起的轨道几何形位演变直接影响线路运营速度和行车安全。轨道几何形位演变的有效防控是保证轨道平顺性的核心关键。以考虑两侧简支梁引桥及路基影响的3跨连续梁桥为研究对象,基于作者已建立的连续梁桥典型变形引起轨道几何形位改变的映射解析计算模型,定量化研究桥墩沉降,梁端横、竖向转角及梁体横、竖向错台等典型变形对CRTSⅡ型板式无砟轨道结构轨道几何形位改变的影响,并提出钢轨变形防控措施。研究结论:(1)钢轨变形量与连续梁桥变形幅值呈正比,具有明显"跟随性";(2)连续梁桥变形导致较大扣件力集中在梁缝处;(3)无论是桥墩沉降、梁端转角还是梁体错台,都会使在桥梁变形区域边界处的钢轨产生"上翘"的现象,且"上翘"值与桥梁变形幅值呈正相关,合理控制变形区域边界处的钢轨上翘,可保证线路高效安全运营;(4)本研究结论可为防治轨道几何形位演变提供理论依据。  相似文献   

13.
研究目的:跨度超过200 m的无砟轨道桥梁,采用普通PC梁已不尽合理,而大跨钢结构桥梁对无砟轨道的适应性尚存在许多不明之处,且造价较高。因此,PC梁与钢结构相结合的组合结构桥梁,兼具二者优点,是一种切实可行的结构。组合结构一般有梁拱、梁索、梁桁组合,本文结合西延高铁王家河特大桥分别就三种组合结构在高铁无砟轨道中的适应性进行分析,从而为无砟轨道大跨度桥梁选型拓宽思路。研究结论:(1) 248 m梁拱、梁索、梁桁组合结构,均可满足高速铁路无砟轨道的要求;(2)对于主跨的混凝土徐变变形控制方面,梁拱组合结构效果最好;(3)部分斜拉桥增设背索对控制主梁变形效果显著;(4)本研究成果对PC组合结构在高速铁路大跨桥梁中的应用具有一定意义。  相似文献   

14.
研究目的:框架板式无砟轨道是一种新型轨道结构,广珠城际轨道交通采用框架板式无砟轨道,但目前国内尚未建立系统的设计方法。通过本文研究,建立框架板式无砟轨道计算模型和结构计算方法,掌握框架板式无砟轨道受力和变形的基本规律,为框架板式无砟轨道设计提供理论依据。 研究结论:框架板式无砟轨道具有良好的技术经济性,采用框架型板式轨道对于降低轨道板翘曲的影响是有利的。本文建立的无砟轨道计算模型和结构分析方法能够考虑列车荷载、温度荷载、路基不均匀沉降和桥梁挠曲等因素,可以系统地进行框架板式无砟轨道结构分析,进而掌握框架板式无砟轨道受力和变形的基本规律。通过设计参数(CA砂浆弹性模量、扣件刚度、基础不均匀沉降)对框架板式无砟轨道受力和变形的影响分析,可见轨道板和底座的受力和变形随着CA砂浆弹性模量的增加而减少,随着扣件刚度的增大而增大,随着不均匀沉降量的增大而增大。  相似文献   

15.
研究目的:针对CRTSⅡ型板式无砟轨道体系的结构特点,以京沪高速铁路某大跨度连续梁桥为研究对象,采用线桥一体化模型讨论轨道体系对桥梁动力特性及地震反应的影响。研究结论:(1)轨道约束体系可增强相邻桥跨间的纵向联系,使按传统模型分析得到的两个单独振动单元变为一个整体振动单元,随着简支梁跨数的减少,连续梁桥的纵向一阶自振周期逐渐减小;(2)采用线桥一体化模型计算的连续梁桥地震反应大于传统模型,且随着简支梁跨数的增加,地震反应增大明显,不考虑轨道体系的纵向约束效应时,连续梁桥的地震反应偏于不安全;(3)随着轨道系统伸缩刚度的降低,线桥一体化模型的计算结果越来越接近传统模型;(4)随着端刺刚度的增加,连续梁桥的地震反应逐渐减小,但当端刺刚度大于一定值时,对连续梁桥的地震反应几乎无影响;(5)该研究结果可为多遇地震下高速铁路桥梁抗震计算模型的修订提供依据。  相似文献   

16.
研究目的:桥上CRTSⅡ型板式无砟轨道无缝线路梁-板-轨及层间相互作用机理比较复杂,为研究各轨道及桥梁结构的制动力传递规律及其影响因素,基于有限元法和梁-板-轨相互作用原理,建立多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路空间耦合模型,计算列车制动荷载作用下各轨道及桥梁结构的纵向力与位移,并分析多种因素对制动力传递规律的影响。研究结论:(1)制动荷载作用下的轨道结构纵向力由拉力逐渐变为压力,纵向位移呈现先增后减的趋势;(2)需根据不同的检算部件选取最不利的荷载工况;(3)在检算时需考虑轨道板/底座板刚度的折减,且必须保证其施工质量;(4)采用小阻力扣件时轨板快速相对位移的剧增易带动轨下胶垫滑出;(5)固结机构、桥墩/台采用较大纵向刚度,并保持滑动层的良好滑动性能有利于各轨道及桥梁结构的受力与变形;(6)该研究成果可为桥上CRTSⅡ型板式无砟轨道无缝线路的设计、施工及运营维护提供参考。  相似文献   

17.
静风荷载对高墩大跨桥梁位移影响分析   总被引:1,自引:0,他引:1  
为了研究静风荷载对高墩大跨桥梁纵横向位移的影响,为高墩大跨桥梁上铺设无缝线路、无砟轨道提供理论依据,运用有限元软件ANSYS,建立桥梁—墩台—基础相互作用一体化模型,分析了静风荷载对桥梁纵向位移、横向位移的影响以及不同桥型对静风荷载抵抗能力的影响。结果表明,静风荷载作用下,高墩大跨桥梁会产生较大的纵横向位移;在最大风荷载作用下,横向位移产生的轨向不平顺值未超过高速铁路轨向不平顺管理值,且不会影响无缝线路的稳定性;静风荷载下引起梁体和墩台纵向位移会影响梁轨相互作用;采用刚构桥较连续梁桥有利于控制风荷载对桥梁变形的影响。  相似文献   

18.
针对简支梁和连续梁,建立整桥系统的计算模型,对墩台位移引起的作用力作用下桥上纵连板式无砟轨道的梁轨耦合作用规律进行分析研究。研究表明:墩台位移引起的作用力是纵连式无砟轨道梁轨相互作用较重要的附加作用力,建议受日照及风荷载影响较大的高墩桥设计中考虑墩台位移引起的作用力的影响;连续梁与简支梁桥墩向右位移时所受的外荷载大致相当,轨道及桥梁各部件所受附加力也大致相等,且桥墩纵向位移越大,各部件所受附加力越大;考虑桥梁伸缩及桥墩位移的共同作用时,轨道及桥梁各部件的受力与变形均较单因素作用时量值大,且连续梁上各部件的受力与变形较简支梁大;从梁体位移方向的比较来看,当桥墩位移与桥梁伸缩方向相同时,钢轨、轨道板、端刺的受力及轨道各部件的位移较大,而当桥墩位移与桥梁伸缩方向相反时,剪力齿槽、墩台、底座板所受纵向力较大;从荷载耦合方式来看,桥梁伸缩及桥墩位移两种荷载耦合时,轨道及桥梁各部件的受力与变形要小于两种荷载单独作用后将计算结果叠加的情况,主要是由于滑动层摩阻力等线路约束阻力的塑性极限造成的。  相似文献   

19.
应用有限元方法建立土质路基上CRTS III型板式无砟轨道系统空间耦合模型,研究路基不均匀沉降作用下板式轨道的受力和变形特性,以及路基发生不均匀沉降时底座板和路基表层之间接触应力和脱空区域的变化规律。结果表明:路基发生不均匀沉降时,无砟轨道结构在重力作用下会发生跟随性变形;轨道板、自密实混凝土和底座板在路基沉降作用下的应力受路基沉降波长和幅值的综合影响,路基沉降幅值越大,轨道各层受力越大,波长为20~30 m的路基沉降对轨道应力的影响较大;底座板和路基表层间的接触应力和脱空区域随着路基沉降幅值的增大而增大,随着路基沉降波长的增大出现先增大后减小的变化趋势。由此可见,路基不均匀沉降会对轨道结构的受力和变形产生明显影响,严重时会造成轨道脱空,对行车安全舒适性产生较大影响,应加以严格控制。  相似文献   

20.
研究目的:为研究高速铁路64 m主跨连续梁桥上铺设无砟轨道无缝道岔的可行性,本文以京雄城际铁路黄固特大桥为研究对象,基于道岔-桥梁相互作用原理、非线性有限元理论,建立无缝道岔-无砟轨道-桥梁空间耦合静力学模型,研究在温度作用、列车垂向荷载、列车制(启)动荷载以及断轨时的大跨桥上无缝道岔力学特性,提出一套适用于大跨桥梁无缝道岔的检算方法和轨道结构优化方案。研究结论:(1)主跨64 m连续梁全桥采用常阻力扣件时,温度和列车荷载下钢轨附加力较大,钢轨最大拉、压应力分别为382.01 MPa和371.30 MPa,超过钢轨容许应力;(2)温度作用下的尖轨、心轨相对基本轨的位移大于挠曲和制(启)动两种工况,相对位移值远小于限值要求;(3)当连续梁两侧相邻一跨简支梁及一侧梁端20 m范围内采用小阻力扣件时,钢轨总应力相对比常阻力扣件方案可降低12.03%,强度、稳定性等指标均可满足规范要求;(4)本研究成果可为大跨桥梁无缝道岔的设计与铺设提供借鉴与参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号