首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on the national emission inventory data from different countries, heavy-duty trucks are the highest on-road PM2.5 emitters and their representation is estimated disproportionately using current modeling methods. This study expands current understanding of the impact of heavy-duty truck movement on the overall PM2.5 pollution in urban areas through an integrated data-driven modeling methodology that could more closely represent the truck transportation activities. A detailed integrated modeling methodology is presented in the paper to estimate urban truck related PM2.5 pollution by using a robust spatial regression-based truck activity model, the mobile source emission and Gaussian dispersion models. In this research, finely resolved spatial–temporal emissions were calculated using bottom-up approach, where hourly truck activity and detailed truck-class specific emissions rates are used as inputs. To validate the proposed methodology, the Cincinnati urban area was selected as a case study site and the proposed truck model was used with U.S. EPA’s MOVES and AERMOD models. The heavy-duty truck released PM2.5 pollution is estimated using observed concentrations at the urban air quality monitoring stations. The monthly air quality trend estimated using our methodology matches very well with the observed trend at two different continuous monitoring stations with Spearman’s rank correlation coefficient of 0.885. Based on emission model results, it is found that 71 percent of the urban mobile-source PM2.5 emissions are caused by trucks and also 21 percent of the urban overall ambient PM2.5 concentrations can be attributed to trucks in Cincinnati urban area.  相似文献   

2.
Traffic represents one of the largest sources of primary air pollutants in urban areas. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentrations of a wide range of pollutants. A mutual characteristic of most of these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emissions inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for a wide range of vehicle types. The majority of inventories are compiled using ‘passive’ data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. Current trends are towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this paper, a methodology for estimating emissions from mobile sources using real-time data is described. This methodology is used to calculate emissions of sulphur dioxide (SO2), oxides of nitrogen (NOx), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter less than 10 μm aerodynamic diameter (PM10), 1,3-butadiene (C4H6) and benzene (C6H6) at a test junction in Dublin. Traffic data, which are required on a street-by-street basis, is obtained from induction loops and closed circuit televisions (CCTV) as well as statistical data. The observed traffic data are compared to simulated data from a travel demand model. As a test case, an emissions inventory is compiled for a heavily trafficked signalized junction in an urban environment using the measured data. In order that the model may be validated, the predicted emissions are employed in a dispersion model along with local meteorological conditions and site geometry. The resultant pollutant concentrations are compared to average ambient kerbside conditions measured simultaneously with on-line air quality monitoring equipment.  相似文献   

3.
Dispersion models are useful tools for setting emission control priorities and developing strategies for reducing air toxics emissions. Previous methodologies for modeling hazardous air pollutant emissions for onroad mobile sources are based on using spatial surrogates to allocate county level emissions to grid cells. A disadvantage of this process is that it spreads onroad emissions throughout a grid cell instead of along actual road locations. High local concentrations may be underestimated near major roadways, which are often clustered in urban centers. Here, we describe a methodology which utilizes a Geographic Information System to allocate benzene emissions to major road segments in an urban area and model the segments as elongated area sources. The Industrial Source Complex Short Term dispersion model is run using both gridded and link-based emissions to evaluate the effect of improved spatial allocation of emissions on ambient modeled benzene concentrations. Allocating onroad mobile emissions to road segments improves the agreement between modeled concentrations when compared with monitor observations, and also results in higher estimated concentrations in the urban center.  相似文献   

4.
Abstract

On-road light-duty vehicles (LDVs) play an important role in contributing to urban air pollution. Although vehicles are getting cleaner, regional growth in vehicle population and vehicle miles traveled would somewhat offset California's efforts in transportation pollution reduction. To better understand the role of LDVs in future air pollution, we conduct a case study for Sacramento, California, and investigate future trends in urban air pollution attributable to the light-duty fleet. Results indicate that ambient concentrations of CO, NO x , and total organic gases (TOGs) caused by future light-duty fleets would dramatically decrease over coming years. The resulting concentrations in 2030 might be as low as approximately 20% of the 2005 concentrations. These reflect the improvements in vehicle/fuel technologies and standards in California. However, the future particulate matter (PM10) pollution could be slightly worse than that caused by the 2005 fleet. This is a result of the growing fleet-average emission factors of particulates from 2005 to 2030. For purposes of future particulate control, more attention needs to be paid to LDVs, besides heavy-duty vehicles.  相似文献   

5.
Widespread adoption of plug-in electric vehicles (PEVs) may substantially reduce emissions of greenhouse gases while improving regional air quality and increasing energy security. However, outcomes depend heavily on the electricity generation process, power plant locations, and vehicle use decisions. This paper provides a clear methodology for predicting PEV emissions impacts by anticipating battery-charging decisions and power plant energy sources across Texas. Life-cycle impacts of vehicle production and use and Texans’ exposure to emissions are also computed and monetized. This study reveals to what extent PEVs are more environmentally friendly, for most pollutant species, than conventional passenger cars in Texas, after recognizing the emissions and energy impacts of battery provision and other manufacturing processes. Results indicate that PEVs on today’s grid can reduce GHGs, NOx, PM10, and CO in urban areas, but generate significantly higher emissions of SO2 than existing light-duty vehicles. Use of coal for electricity production is a primary concern for PEV growth, but the energy security benefits of electrified vehicle-miles endure. As conventional vehicle emissions rates improve, it appears that power grids must follow suit (by improving emissions technologies and/or shifting toward cleaner generation sources) to compete on an emissions-monetized basis with conventional vehicles in many locations. Moreover, while PEV pollution impacts may shift to more remote (power plant) locations, dense urban populations remain most strongly affected by local power plant emissions in many Texas locations.  相似文献   

6.
The health cost of on-road air pollution exposure is a component of traffic marginal costs that has not previously been assessed. The main objective of this paper is to introduce on-road pollution exposure as an externality of traffic, particularly important during traffic congestion when on-road pollution exposure is highest. Marginal private and external cost equations are developed that include on-road pollution exposure in addition to time, fuel, and pollution emissions components. The marginal external cost of on-road exposure includes terms for the marginal vehicle’s emissions, the increased emissions from all vehicles caused by additional congestion from the marginal vehicle, and the additional exposure duration for all travelers caused by additional congestion from the marginal vehicle. A sensitivity analysis shows that on-road pollution exposure can be a large portion (18%) of marginal social costs of traffic flow near freeway capacity, ranging from 4% to 38% with different exposure parameters. In an optimal pricing scenario, excluding the on-road exposure externality can lead to 6% residual welfare loss because of sub-optimal tolls. While regional pollution generates greater costs in uncongested conditions, on-road exposure comes to dominate health costs on congested freeways because of increased duration and intensity of exposure. The estimated marginal cost and benefit curves indicate a theoretical preference for price controls to address the externality problem. The inclusion of on-road exposure costs reduces the magnitudes of projects required to cover implementation costs for intelligent transportation system (ITS) improvements; the net benefits of road-pricing ITS systems are increased more than the net benefits of ITS traffic flow improvements. When considering distinct vehicle classes, inclusion of on-road exposure costs greatly increases heavy-duty vehicle marginal costs because of their higher emissions rates and greater roadway capacity utilization. Lastly, there are large uncertainties associated with the parameters utilized in the estimation of health outcomes that are a function of travel pollution intensity and duration. More research is needed to develop on-road exposure modeling tools that link repeated short-duration exposure and health outcomes.  相似文献   

7.
Nowadays, the massive car-hailing data has become a popular source for analyzing traffic operation and road congestion status, which unfortunately has seldom been extended to capture detailed on-road traffic emissions. This study aims to investigate the relationship between road traffic emissions and the related built environment factors, as well as land uses. The Computer Program to Calculate Emissions from Road Transport (COPERT) model from European Environment Agency (EEA) was introduced to estimate the 24-h NOx emission pattern of road segments with the parameters extracted from Didi massive trajectory data. Then, the temporal Fuzzy C-Means (FCM) Clustering was used to classify road segments based on the 24-h emission rates, while Geographical Detector and MORAN’s I were introduced to verify the impact of built environment on line source emissions and the similarity of emissions generated from the nearby road segments. As a result, the spatial autoregressive moving average (SARMA) regression model was incorporated to assess the impact of selected built environment factors on the road segment emission rate based on the probabilistic results from FCM. It was found that short road length, being close to city center, high density of bus stations, more ramps nearby and high proportion of residential or commercial land would substantially increase the emission rate. Finally, the 24-h atmospheric NO2 concentrations were obtained from the environmental monitor stations, to calculate the time variational trend by comparing with the line source traffic emissions, which to some extent explains the contribution of on-road traffic to the overall atmospheric pollution. Result of this study could guide urban planning, so as to avoid transportation related built environment attributes which may contribute to serious atmospheric environment pollutions.  相似文献   

8.
Increasing regional mobility demand amid rising roadway congestion has motivated plans for passenger ferry expansion and modernization in many parts of the US. While this trend applies to ferry systems in Alaska, New York, Boston, and Washington state, efforts to expand ferry service in the San Francisco Bay Area are unique in scale and vision. Integrating ferry service into the regional, door-to-door transit system can significantly increase water-crossing capacity for commuters. However, to realize this potential, the ferry industry must meet several challenges associated with growth, including environmental impacts. In particular, concern over air pollution emissions from marine engines is motivating new comparisons between ferries and other transportation modes in terms of both mobility and air pollution. This paper describes the current debate about ferry system operation and expansion, and presents a parametric analysis comparing existing, uncontrolled ferry emissions to automobiles. Under all reasonable assumptions, we show that diesel-powered ferries without emissions controls will produce more NOx and PM, but less CO per passenger-trip than if those people commuted by car under current conditions. This paper also projects the emissions from the expanded ferry system proposed for the San Francisco Bay Area, showing that a larger ferry fleet equipped with new engines meeting future EPA emissions standards could become one of the major non-road NOx sources in the region. We conclude by outlining the alternatives and challenges to reduce ferry emissions so that they are more comparable to automobile emissions. Policy implications of these alternatives are also discussed.  相似文献   

9.
One of the main causes of mortality worldwide is air pollution. To tackle this problem, local, regional and national governments have implemented policies to reduce emissions from industrial and on-road sources. However, when these policies are being designed, shipping emissions are often overlooked. There has been a drastic increase in the demand for cruises and its economic relevance is also growing in port-cities. Barcelona is Europe’s leading cruise port, and it is located near the centre of the city. In this context, this paper analyses the impact of cruise ships in the air quality of the entire city of Barcelona using a dataset with information about pollutants and the number of cruises arriving to the port. We show that there is a direct impact between cruises staying at the port and city pollution. Additionally, the size and age of the cruise also affect air quality. The larger (or newer) the cruise is, the higher the emission generated. Moreover, our simulations show that the whole city is affected by these emissions.  相似文献   

10.
The study inspects the traffic-induced gaseous emission dispersion characteristics from the urban roadside sites in Delhi, India. The concentration of pollutants viz. CO, NO2 and SO2 along with traffic and ambient atmospheric conditions at five selected local urban road sites were simultaneously measured. A developed General Finite Line Source Model (GFLSM) was used to predict the local roadside CO, NO2 and SO2 concentrations. A comparison of the observed and predicted values emission parameters using GFLS model has shown that the predicted values for SO2, CO and NO2 at all the selected local urban roadside locations are found to lie within the error bands of 5%, 6%, and 7% respectively. A high level of agreement was found between the monitored and estimated CO, NO2 and SO2 concentration data. From the study, it has also been established that the developed model exhibits the capability of reasonably predicting the characteristics of gaseous pollutants dispersion from on-road vehicles for the urban city air quality.  相似文献   

11.
ABSTRACT

The transportation sector is the greatest contributor to air pollution. With the booming demand for transportation, reducing the pollution has become one of the main concerns of researchers. EPA emission standards are designed to protect air quality and human health. Diesel Euro 5 NOx has become a matter of disquiet since it has been found that NOx emissions are significantly exceeding the standard limit. This paper presents a study to estimate the disparity in real-world NOx emission levels resulted from all diesel Euro 5 passenger cars (PC) and light commercial vehicles (LCV) that are present in Ireland. NOx emission levels calculated based on laboratory test results, on-road measurements and the COPERT 4 model were compared. Additionally, NOx emission levels from the defective Volkswagen models have been calculated to quantify the effect of the Volkswagen scandal on Ireland. Impacts of excess NOx emissions on health and cost have also been presented.  相似文献   

12.
A detailed investigation was conducted to study the sources of particulate matter in the vicinity of an urban road in Žilina. To determine the amount of particulate matter (PM10, PM2.5 and PM1) present in the ambient air, a reference gravimetric method was used. The main objective of this contribution was to identify the sources of these particles by means of statistical methods, specifically principal component analysis (PCA), factor analysis (FA), and absolute principal component scores (APCS), as well as using the presence of 17 metals in the particulate matter (Na, Mg, Al, Ca, V, Cr, Fe, Mn, Ni, Cu, Zn, As, Mo, Sb, Cd, Ba, Pb). To identify the metals in the particulate matter samples and to determine their abundances, spectroscopic methods were used, specifically inductively coupled plasma mass spectrometry (ICP-MS). Each of these metals may come from a specific source, such as the burning of fossil fuels in fossil fuel power plants; local heating of households; the burning of liquefied fossil fuels in the combustion engines of vehicles; the burning of coal and wood; non-combustion related emissions resulting from vehicular traffic; resuspension of traffic-related dust; and industry. Diesel vehicles and non-combustion emissions from road traffic have been identified as two key sources of the particulate matter. The results reveal that non-combustion emissions, which are associated with the elements Na, Fe, Mn, Ni, Zn, Mo, Sb, Cd, and Pb, are the major contributors, followed by combustion emissions from diesel vehicles, which are associated with the elements Mg, Ca, and Ba.  相似文献   

13.
In this study, we estimated the transportation-related emissions of nitrogen oxides (NOx) at an individual level for a sample of the Montreal population. Using linear regression, we quantified the associations between NOx emissions and selected individual attributes. We then investigated the relationship between individual emissions of NOx and exposure to nitrogen dioxide (NO2) concentrations derived from a land-use regression model. Factor analysis and clustering of land-uses were used to test the relationships between emissions and exposures in different Montreal areas. We observed that the emissions generated per individual are positively associated with vehicle ownership, gender, and employment status. We also noted that individuals who live in the suburbs or in peripheral areas generate higher emissions of NOx but are exposed to lower NO2 concentrations at home and throughout their daily activities. Finally, we observed that for most individuals, NO2 exposures based on daily activity locations were often slightly more elevated than NO2 concentrations at the home location. We estimated that between 20% and 45% of individuals experience a daily exposure that is largely different from the concentration at their home location. Our findings are relevant to the evaluation of equity in the generation of transport emissions and exposure to traffic-related air pollution. We also shed light on the effect of accounting for daily activities when estimating air pollution exposure.  相似文献   

14.
Subnational incentives to adopt zero emission vehicles (ZEVs) are critical for reducing the external economic damages posed by transportation to air quality and the climate. Few studies estimate these damages for on-road freight, especially at scales relevant for subnational policies requiring cross-border cooperation. Here, we assess the damages to US receptors from emissions of air pollutants (PM2.5, NOx, SO2, NH3), and greenhouse gases (CO2, CH4, N2O) from medium and heavy duty freight trucking, and the benefits of ZEV adoption by census division in the Province of Ontario. We develop an integrated modelling framework connecting a travel demand model, a mobile emissions simulator, and a regression based marginal damages model of air pollutants and climate change. We estimate $1.9 billion (2010 USD) in annual cross-border damages, or $0.16/VKT, resulting from scaled up atmospheric emissions from a ‘typical day’ of medium and heavy duty truck traffic volume for Ontario in 2012. This implies approximately $8000 per truck per year in damages, which could inform an economic incentive for emission reduction. The provincial goal of 5% ZEV adoption would reduce GHG emissions in 2012 by 800 ktCO2e, yielding $89 Million (2010 USD) in cross-border benefits annually, with air quality co-benefits of $83/tCO2e. This result varies between −19% and 22% based on sensitivity analysis for travel and emissions models, though economic damages are likely the largest uncertainty source. Such advances in subnational scale integrated modeling of the environmental impacts of freight can offer insights into the sustainable design of clean freight policy and programs.  相似文献   

15.
Suburban sprawl, population growth, and automobile dependency contribute directly to air pollution problems in US metropolitan areas. As metropolitan regions attempt to mitigate these problems, they are faced with the difficult task of balancing the mobility needs of a growing population and economy, while simultaneously lowering or maintaining levels of ambient pollutants. Although ambient air quality can be directly monitored, predicting the amount and fraction of the mobile source components presents special challenges. A modeling framework that can correlate spatial and temporal emission-specific vehicle activities is required for the complex photochemical models used to predict pollutant concentrations. This paper discusses the GIS-based modeling approach called the Mobile Emission Assessment System for Urban and Regional Evaluation (MEASURE). MEASURE provides researchers and planners with a means of assessing motor vehicle emission reduction strategies. Estimates of spatially resolved fleet composition and activity are combined with activity-specific emission rates to predict engine start and running exhaust emissions. Engine start emissions are estimated using aggregate zonal information. Running exhaust emissions are predicted using road segment specific information and aggregate zonal information. The paper discusses the benefits and challenges related to mobile source emissions modeling in a GIS framework and identifies future GIS mobile emissions modeling research needs.  相似文献   

16.
Shipping is a growing transport sector representing a relevant share of atmospheric pollutant emissions at global scale. In the Mediterranean Sea, shipping affects air quality of coastal urban areas with potential hazardous effects on both human health and climate. The high number of different approaches for investigating this aspect limits the comparability of results. Furthermore, limited information regarding the inter-annual trends of shipping impacts is available. In this work, an approach integrating emission inventory, numerical modelling (WRF-CAMx modelling system), and experimental measurements at high and low temporal resolution is used to investigate air quality shipping impact in the Adriatic/Ionian area focusing on four port-cities: Brindisi and Venice (Italy), Patras (Greece), and Rijeka (Croatia). Results showed shipping emissions of particulate matter (PM) and NOx comparable to road traffic emissions at all port-cities, with larger contributions to local SO2 emissions. Contributions to PM2.5 ranged between 0.5% (Rijeka) and 7.4% (Brindisi), those to PM10 were between 0.3% (Rijeka) and 5.8% (Brindisi). Contributions to particle number concentration (PNC) showed an impact 2–4 times larger with respect to that on mass concentrations. Shipping impact on gaseous pollutants are larger than those to PM. The contribution to total polycyclic aromatic hydrocarbon (PAHs) concentrations was 82% in Venice and 56% in Brindisi, with a different partition gas-particle because of different meteorological conditions. The inter-annual trends analysis showed the primary contribution to PM concentrations decreasing, due to the implementation of the European legislation on the use of low-sulphur content fuels. This effect was not present on other pollutants like PAHs.  相似文献   

17.
This paper considers the effects of different strategies that might be considered to reduce the impact made by road traffic on air pollution in London. The management of road traffic in large urban areas is one of many options being considered to reduce pollutant emissions to meet statutory air pollution objectives. Increasingly, the concept of a low emission zone (LEZ) is being proposed as a means of achieving this reduction. An assessment has been made of different LEZ scenarios in central London, which involve reducing traffic flow or modifying the vehicle technology mix. Methods of predicting annual mean nitrogen dioxide concentrations utilising comprehensive traffic data and air pollution measurements have been used to develop empirical prediction models. Comparisons with statutory air pollution objectives show that significant action will be required to appreciably decrease concentrations of nitrogen dioxide close to roads. The non-linear atmospheric chemistry leading to the formation of nitrogen dioxide, results in a complex relationship between vehicle emissions and ambient concentrations of the pollutant. We show that even ambitious LEZ scenarios in central London produce concentrations of nitrogen oxides that are achieved through a “do nothing” scenario only five years later.  相似文献   

18.
The paper analyzes Russian and European emission and dispersion models aimed at the estimation of road transport related air pollution on street and regional scale as exemplified with St. Petersburg, Russia. It demonstrates the results of model calculations of peak concentrations of main harmful substances (NОX, CO and PM10) along the St. Petersburg Ring Road at high traffic volume and adverse meteorological conditions (calm, temperature inversion) executed by means of a Russian street pollution model, and it evaluates the computed results against the measurements from monitoring stations. The paper also examines the ways of adaptation of the COPERT IV model – a software tool for calculation of air pollutant and greenhouse gas emissions from road transport on regional or country scale – to the inventory conditions of the Russian Federation, compares the COPERT IV numerical estimates with the national inventory data. It also reveals the obstacles and possibilities in the harmonization of the Russian and European approaches.  相似文献   

19.
This paper presents a methodology of assigning traffic in a network with the consideration of air quality. Traffic assignment is formulated as an optimization problem considering travel cost and on-road emissions. It introduces a cell-based approach to model emission concentrations so that either the average or maximum emissions in a network can be considered in the optimization process. The emissions in a cell are modeled taking into consideration the influence of the emission sources from all cells in the network. A case study demonstrates that minimizing travel cost and reducing air pollutants may not be always achieved simultaneously. The traffic assignment procedure can effectively reduce emission concentrations at those locations with the worst air quality conditions, with only a marginal increase in travel time and average emission concentration in the network.  相似文献   

20.
Air quality indices are used for local and regional air quality management in many metro cities of the world. In the present study, air quality indices have been calculated using the US Environmental Protection Agency procedure to assess the status of ambient air quality near busy traffic intersections in Bangalore, India. The measured 24 h average criteria pollutants such as sulfur dioxide, oxides of nitrogen, respirable suspended particulate matter and suspended particulate matter for the period from 1997 to 2005 at three air quality monitoring stations are used for the development of AQIs. The result indicated that the air pollution at all the three air quality monitoring stations can be characterized as ‘good’ and ‘moderate’ for SO2 and NOx concentrations for all days from 1997 to 2004. Analysis of air quality indices values for both forms of suspended matter concentrations during 1999–2005 indicates 91% and 94% of the times days are in category ‘good’ and ‘moderate’. The yearly average air quality indices values of respirable suspended particulate matter and suspended particulate matter concentrations indicated decreasing trend and are coming under the category of ‘good’ and ‘moderate’ form the category of ‘poor’ and ‘very poor’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号