首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The family of macroscopic node models which comply to a set of basic requirements is presented and analysed. Such models are required in macro-, mesoscopic traffic flow models, including dynamic network loading models for dynamic traffic assignment. Based on the behaviour of drivers approaching and passing through intersections, the model family is presented. The headway and the turn delay of vehicles are key variables. Having demand and supply as input creates a natural connection to macroscopic link models. Properties like the invariance principle and the conservation of turning fractions are satisfied. The inherent non-uniqueness is analysed by providing the complete set of feasible solutions. The node models proposed by Tampère et al. (2011), Flötteröd and Rohde (2011) and Gibb (2011) are members of the family. Furthermore, two new models are added to the family. Solution methods for all family members are presented, as well as a qualitative and quantitative comparison. Finally, an outlook for the future development of empirically verified models is given.  相似文献   

2.
This article describes a new approach to the macroscopic first order modeling and simulation of traffic flow in complex urban road intersections. The framework is theoretically sound, operational, and comprises a large body of models presented so far in the literature.Working within the generic node model class of Tampere et al. (2011), the approach is developed in two steps. First, building on the incremental transfer principle of Daganzo et al. (1997), an incremental node model for general road intersections is developed. A limitation of this model (as of the original incremental transfer principle) is that it does not capture situations where the increase of one flow decreases another flow, e.g., due to conflicts. In a second step, the new model is therefore supplemented with the capability to describe such situations. A fixed-point formulation of the enhanced model is given, solution existence and uniqueness are investigated, and two solution algorithms are developed. The feasibility and realism of the new approach is demonstrated through a synthetic and a real case study.  相似文献   

3.
This paper presents a new mathematical framework for obtaining quantitative safety measure using macroscopic as well as microscopic traffic data. The safety surrogate obtained from the macroscopic data is in terms of analysis performed on vehicle trajectories obtained from the macroscopic data. This method of obtaining safety measure can be used for many different types of applications. The safety surrogate for the traffic dynamics are developed in terms of a new concept of Negative Speed Differentials (NSD) that involve a convolution of vehicle speed function obtained from vehicle trajectories and then performing the integration of the square of the output for its negative values. The framework is applicable to microscopic traffic dynamics as well where we can use car following models for microscopic dynamics or the LWR model for macroscopic dynamics. This paper then presents the use of this new safety surrogate on the development of a feedback control law for controlling traffic in work zones using Dynamic Message Signs. A hybrid dynamics model is used to represent the switching dynamics due to changing DMS messages. A feedback control design for choosing those messages is presented as well as a simple simulation example to show its application.  相似文献   

4.

Automated vehicles (AV) will change transport supply and influence travel demand. To evaluate those changes, existing travel demand models need to be extended. This paper presents ways of integrating characteristics of AV into traditional macroscopic travel demand models based on the four-step algorithm. It discusses two model extensions. The first extension allows incorporating impacts of AV on traffic flow performance by assigning specific passenger car unit factors that depend on roadway type and the capabilities of the vehicles. The second extension enables travel demand models to calculate demand changes caused by a different perception of travel time as the active driving time is reduced. The presented methods are applied to a use case of a regional macroscopic travel demand model. The basic assumption is that AV are considered highly but not fully automated and still require a driver for parts of the trip. Model results indicate that first-generation AV, probably being rather cautious, may decrease traffic performance. Further developed AV will improve performance on some parts of the network. Together with a reduction in active driving time, cars will become even more attractive, resulting in a modal shift towards car. Both circumstances lead to an increase in time spent and distance traveled.

  相似文献   

5.
Passing from path flows to link flows requires non-linear and complex flow propagation models known as network loading models. In specific technical literature, different approaches have been used to study Dynamic Network Loading models, depending on whether the link performances are expressed in an aggregate or disaggregate way, and how vehicles are traced. When vehicle movements are traced implicitly and link performances are expressed in an aggregate way, the approach is macroscopic. When vehicle movements are traced explicitly, two cases are possible, depending on whether link performances are expressed in a disaggregate or aggregate way. In the first case, the approach is microscopic, otherwise it is mesoscopic.In this paper, a mesoscopic Dynamic Network Loading model is considered, based on discrete packets and taking into account the vehicle acceleration and deceleration. A simulation was carried out, first using theoretical input data to simulate over-saturation condition, and then real data to validate the model. The results show that the model appears realistic in the representation of outflow dynamics and is quite easy to calculate. It is worth noting that network loading models are usually used downstream of the assignment models from which they take path flows to calculate link flows. In the above mentioned simulation, we assumed that a generic assignment model provides sinusoidal path flow.  相似文献   

6.
Simulating driving behavior in high accuracy allows short-term prediction of traffic parameters, such as speeds and travel times, which are basic components of Advanced Traveler Information Systems (ATIS). Models with static parameters are often unable to respond to varying traffic conditions and simulate effectively the corresponding driving behavior. It has therefore been widely accepted that the model parameters vary in multiple dimensions, including across individual drivers, but also spatially across the network and temporally. While typically on-line, predictive models are macroscopic or mesoscopic, due to computational and data considerations, nowadays microscopic models are becoming increasingly practical for dynamic applications. In this research, we develop a methodology for online calibration of microscopic traffic simulation models for dynamic multi-step prediction of traffic measures, and apply it to car-following models, one of the key models in microscopic traffic simulation models. The methodology is illustrated using real trajectory data available from an experiment conducted in Naples, using a well-established car-following model. The performance of the application with the dynamic model parameters consistently outperforms the corresponding static calibrated model in all cases, and leads to less than 10% error in speed prediction even for ten steps into the future, in all considered data-sets.  相似文献   

7.
Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts to constrain link flows to capacity. Capacity constrained models with residual queues are often referred to as quasi-dynamic traffic assignment models. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a first order node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in general transportation networks. This model includes a first order (steady-state) node model that yields more realistic turn capacities, which are then used to determine consistent capacity constrained traffic flows, residual point (vertical) queues (upstream bottleneck links), and path travel times consistent with queuing theory. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques to find a solution. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks.  相似文献   

8.
Currently, the applicability of macroscopic Dynamic Network Loading (DNL) models for large-scale problems such as network-wide traffic management, reliability and vulnerability studies, network design, traffic flow optimization and dynamic origin–destination (OD) estimation is computationally problematic. The main reason is that these applications require a large number of DNL runs to be performed. Marginal DNL simulation, introduced in this paper, exploits the fact that the successive simulations often exhibit a large overlap. Through marginal simulation, repeated DNL simulations can be performed much faster by approximating each simulation as a variation to a base scenario. Thus, repetition of identical calculations is largely avoided. The marginal DNL algorithm that is presented, the Marginal Computation (MaC) algorithm, is based on first order kinematic wave theory. Hence, it realistically captures congestion dynamics. MaC can simulate both demand and supply variations, making it useful for a wide range of DNL applications. Case studies on different types of networks are presented to illustrate its performance.  相似文献   

9.
Traffic flow propagation stability is concerned about whether a traffic flow perturbation will propagate and form a traffic shockwave. In this paper, we discuss a general approach to the macroscopic traffic flow propagation stability for adaptive cruise controlled (ACC) vehicles. We present a macroscopic model with velocity saturation for traffic flow in which each individual vehicle is controlled by an adaptive cruise control spacing policy. A nonlinear traffic flow stability criterion is investigated using a wavefront expansion technique. Quantitative relationships between traffic flow stability and model parameters (such as traffic flow and speed, etc.) are derived for a generalized ACC traffic flow model. The newly derived stability results are in agreement with previously derived results that were obtained using both microscopic and macroscopic models with a constant time headway (CTH) policy. Moreover, the stability results derived in this paper provide sufficient and necessary conditions for ACC traffic flow stability and can be used to design other ACC spacing policies.  相似文献   

10.
Channelized section spillover (CSS) is usually referred to the phenomenon of a traffic flow being blocked upstream and not being able to enter the downstream channelized section. CSS leads to extra delays, longer queues, and a biased detection of the flow rate. An estimation of CSS, including its occurrence and duration, is helpful for analysis of the state of traffic flow, as a basis for traffic evaluation and management. This has not been studied or reported in prior literature. A Bayesian model is developed through this research to estimate CSS, with its occurrence and duration formulated as a posterior distribution of given travel time and flow rate data. Basic properties of CSS are discussed initially, followed by a macroscopic model that explicitly models the CSS and encapsulates first-in-first-out (FIFO) behavior at an upstream section, with a goal of generating the prior distribution of CSS duration. Posterior distribution is then constructed using the detected flow rate and travel time vehicles samples. The Markov Chain Monte Carlo (MCMC) sampling method is used to solve this Bayesian model. The proposed model is implemented and tested in a channelized intersection and its modeling results are compared with Vissim simulation outputs, which demonstrated satisfactory results.  相似文献   

11.
The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS.  相似文献   

12.
13.
Pricing is considered an effective management policy to reduce traffic congestion in transportation networks. In this paper we combine a macroscopic model of traffic congestion in urban networks with an agent-based simulator to study congestion pricing schemes. The macroscopic model, which has been tested with real data in previous studies, represents an accurate and robust approach to model the dynamics of congestion. The agent-based simulator can reproduce the complexity of travel behavior in terms of travelers’ choices and heterogeneity. This integrated approach is superior to traditional pricing schemes. On one hand, traffic simulators (including car-following, lane-changing and route choice models) consider travel behavior, i.e. departure time choice, inelastic to the level of congestion. On the other hand, most congestion pricing models utilize supply models insensitive to demand fluctuations and non-stationary conditions. This is not consistent with the physics of traffic and the dynamics of congestion. Furthermore, works that integrate the above features in pricing models are assuming deterministic and homogeneous population characteristics. In this paper, we first demonstrate by case studies in Zurich urban road network, that the output of a agent-based simulator is consistent with the physics of traffic flow dynamics, as defined by a Macroscopic Fundamental Diagram (MFD). We then develop and apply a dynamic cordon-based congestion pricing scheme, in which tolls are controlled by an MFD. And we investigate the effectiveness of the proposed pricing scheme. Results show that by applying such a congestion pricing, (i) the savings of travel time at both aggregated and disaggregated level outweigh the costs of tolling, (ii) the congestion inside the cordon area is eased while no extra congestion is generated in the neighbor area outside the cordon, (iii) tolling has stronger impact on leisure-related activities than on work-related activities, as fewer agents who perform work-related activities changed their time plans. Future work can apply the same methodology to other network-based pricing schemes, such as area-based or distance-traveled-based pricing. Equity issues can be investigated more carefully, if provided with data such as income of agents. Value-of-time-dependent pricing schemes then can also be determined.  相似文献   

14.
A wide array of spatial units has been explored in macro-level modeling. With the advancement of Geographic Information System (GIS) analysts are able to analyze crashes for various geographical units. However, a clear guideline on which geographic entity should be chosen is not present. Macro level safety analysis is at the core of transportation safety planning (TSP) which in turn is a key in many aspects of policy and decision making of safety investments. The preference of spatial unit can vary with the dependent variable of the model. Or, for a specific dependent variable, models may be invariant to multiple spatial units by producing a similar goodness-of-fits. In this study three different crash models were investigated for traffic analysis zones (TAZs), block groups (BGs) and census tracts (CTs) of two counties in Florida. The models were developed for the total crashes, severe crashes and pedestrian crashes in this region. The primary objective of the study was to explore and investigate the effect of zonal variation (scale and zoning) on these specific types of crash models. These models were developed based on various roadway characteristics and census variables (e.g., land use, socio-economic, etc.).It was found that the significance of explanatory variables is not consistent among models based on different zoning systems. Although the difference in variable significance across geographic units was found, the results also show that the sign of the coefficients are reasonable and explainable in all models.Key findings of this study are, first, signs of coefficients are consistent if these variables are significant in models with same response variables, even if geographic units are different. Second, the number of significant variables is affected by response variables and also geographic units.Admittedly, TAZs are now the only traffic related zone system, thus TAZs are being widely used by transportation planners and frequently utilized in research related to macroscopic crash analysis. Nevertheless, considering that TAZs are not delineated for traffic crash analysis but they were designed for the long range transportation plans, TAZs might not be the optimal zone system for traffic crash modeling at the macroscopic level. Therefore, it recommended that other zone systems be explored for crash analysis as well.  相似文献   

15.
Demand for public transportation is highly affected by passengers’ experience and the level of service provided. Thus, it is vital for transit agencies to deploy adaptive strategies to respond to changes in demand or supply in a timely manner, and prevent unwanted deterioration in service quality. In this paper, a real time prediction methodology, based on univariate and multivariate state-space models, is developed to predict the short-term passenger arrivals at transit stations. A univariate state-space model is developed at the station level. Through a hierarchical clustering algorithm with correlation distance, stations with similar demand patterns are identified. A dynamic factor model is proposed for each cluster, capturing station interdependencies through a set of common factors. Both approaches can model the effect of exogenous events (such as football games). Ensemble predictions are then obtained by combining the outputs from the two models, based on their respective accuracy. We evaluate these models using data from the 32 stations on the Central line of the London Underground (LU), operated by Transport for London (TfL). The results indicate that the proposed methodology performs well in predicting short-term station arrivals for the set of test days. For most stations, ensemble prediction has the lowest mean error, as well as the smallest range of error, and exhibits more robust performance across the test days.  相似文献   

16.
First-order network flow models are coupled systems of differential equations which describe the build-up and dissipation of congestion along network road segments, known as link models. Models describing flows across network junctions, referred to as node models, play the role of the coupling between the link models and are responsible for capturing the propagation of traffic dynamics through the network. Node models are typically stated as optimization problems, so that the coupling between the link dynamics is not known explicitly. This renders network flow models analytically intractable. This paper examines the properties of node models for urban networks. Solutions to node models that are free of traffic holding, referred to as holding-free solutions, are formally defined and it is shown that flow maximization is only a sufficient condition for holding-free solutions. A simple greedy algorithm is shown to produce holding-free solutions while also respecting the invariance principle. Staging movements through nodes in a manner that prevents conflicting flows from proceeding through the nodes simultaneously is shown to simplify the node models considerably and promote unique solutions. The staging also models intersection capacities in a more realistic way by preventing unrealistically large flows when there is ample supply in the downstream and preventing artificial blocking when some of the downstream supplies are restricted.  相似文献   

17.
A high fidelity cell based traffic simulation model (CELLSIM) has been developed for simulation of high volume of traffic at the regional level. Straightforward algorithms and efficient use of computational resources make the model suitable for real time traffic simulation. The model formulation uses concepts of cellular automata (CA) and car-following (CF) models, but is more detailed than CA models and has realistic acceleration and deceleration models for vehicles. A simple dual-regime constant acceleration model has been used that requires minimal calculation compared to detailed acceleration models used in CF models. CELLSIM is simpler than most CF models; a simplified car-following logic has been developed using preferred time headway. Like CA models, integer values are used to make the model run faster. Space is discretized in small intervals and a new concept of percent space occupancy (SOC) is used to measure traffic congestion. CELLSIM performs well in congested and non-congested traffic conditions. It has been validated comprehensively at the macroscopic and microscopic levels using two sets of field data. Comparison of field data and CELLSIM for trajectories, average speed, density and volume show very close agreement. Statistical comparison of macroscopic parameters with other CF models indicates that CELLSIM performs as good as detailed CF models. Stability analyses conducted using mild and severe disturbances indicate that CELLSIM performs well under both conditions.  相似文献   

18.
This paper presents a research on traffic modelling developed for assessing traffic and energy performance of electric systems installed along roads for dynamic charging-while-driving (CWD) of fully electric vehicles (FEVs).The logic adopted by the developed traffic model is derived from a particular simulation scenario of electric charging: a freight distribution service operated using medium-sized vans. In this case, the CWD service is used to recover the state of charge of the FEV batteries to shortly start with further activities after arrival at the depot.The CWD system is assumed to be implemented in a multilane ring road with several intermediate on-ramp entrances, where the slowest lane is reserved for the dynamic charging of authorized electric vehicles. A specific traffic model is developed and implemented based on a mesoscopic approach, where energy requirements and charging opportunities affect driving and traffic behaviours. Overtaking manoeuvres as well as new entries in the CWD lane of vehicles that need to charge are modelled according to a cooperative driving system, which manages adequate time gaps between consecutive vehicles. Finally, a speed control strategy is simulated at a defined node to create an empty time-space slot in the CWD lane, by delaying the arriving vehicles. This simulated control, implemented to allow maintenance operations for CWD that may require clearing a charging zone for a short time slot, could also be applied to facilitate on-ramp merging manoeuvres.  相似文献   

19.
Assessing sustainability of supply chains is a critical and increasingly complex problem. In recent years sustainability has received more attention in supply chain management (SCM) literature with triple bottom lines including social, environmental, and economic factors. Conventional data envelopment analysis (DEA) models consider decision making units (DMUs) as black boxes that consume a set of inputs to produce a set of outputs and do not take into consideration internal interactions of DMUs. Two-stage DEA models deal with such DMUs. However, existing two-stage DEA models are applicable only in technologies characterized by positive inputs/outputs. This paper aims to build and present a new two-stage DEA model considering negative input-intermediate-output data. Some numerical examples along with some theorems and properties are given to show capability of proposed method. The proposed ideas are used in a case study where 29 Iranian supply chains producing equipment of expendable medical devices are evaluated in terms of sustainability.  相似文献   

20.
The kinetic theory for traffic flow equations can be approached using the Grad’s method. This method, which is derived from the kinetic gas theory, was developed for the Paveri-Fontana equation when a special desired velocity model is assumed. A closure relation for the set of macroscopic equations is found when the density, the average velocity and the velocity variance are the relevant variables chosen to describe the system. Simulation results are also shown and a qualitative comparison with other models in the literature is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号