首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Al 掺杂 T-ZnO 晶须的光致发光及场发射性能   总被引:2,自引:0,他引:2  
用丝网印刷法将Al掺杂的T-ZnO晶须制备成薄膜,以研究其结构形貌、光致发光及场发射性能.所有发光谱均由强的紫外光发射(发光中心集中在373~383 nm)和宽的黄绿光发射(发光中心集中在510~540 nm)组成.ZnO薄膜的内部缺陷浓度决定黄绿光发射的强度.掺杂0.5 mol/L的Al样品的紫外光强度最大,场发射性能最好,其开启电场和阈值电场分别达到0.74 V/μm和2.6 V/μm,场增强因子值为30249.  相似文献   

2.
以醋酸锌为前驱体、醋酸铵为掺杂源,采用溶胶—凝胶法制备出N掺杂的ZnO薄膜,研究了其表面形貌、晶体结构和变温下的光致发光光谱,探讨了N作为受主掺杂的热力学性质。结果表明,掺杂后的薄膜是六角纤锌矿结构,光谱中表现出和N相关的受主束缚激子、自由激子—受主和施主—受主对发光现象。通过理论计算得到,N作为受主的电离能大小为0.255~0.310 eV,表明N是一种有效的浅受主,其能级上的电子在较小的能量下就能够电离。  相似文献   

3.
利用溶胶-凝胶法制备了具有良好表面形貌及c轴择优取向性的(Na,Mg):ZnO薄膜.重点研究了退火温度对薄膜结构性质的影响.扫描电子显微镜(SEM)图像及X射线衍射(XRD)图谱表明退火温度过高或过低都不利于薄膜良好表面形貌的形成及c轴择优取向生长.在一定范围内退火温度的升高,会使薄膜晶粒尺寸逐渐增大,薄膜表面形貌及c轴择优取向性得到改善,560℃为实验条件下的最佳退火温度.样品的荧光光致发光(PL)谱表明经560℃退火后的(Na,Mg):ZnO薄膜具有很少的缺陷及较高的结晶质量,是良好的紫外发光材料.  相似文献   

4.
用波长为1064nm的Nd—YAG激光器,在氧的活性气氛中,通过激光烧蚀Zn靶在Si(111)衬底上获得ZnO薄膜.用电子显微镜(XRD和FESEM)表征ZnO薄膜的结构和表面形貌,用光致发光谱表征光学性质.实验中观察到紫外光发射和深能级的黄绿光发射.紫外光发射是ZnO薄膜的固有性质,深能级光发射是由于存在氧反位缺陷(OZn).紫外光发射和深能级光发射的强度依赖于薄膜的表面粗糙度.表面粗糙度在nm级范围内的ZnO薄膜可以获得高强度的紫外光.  相似文献   

5.
SnO2纳米薄膜的制备及光学性能研究   总被引:1,自引:1,他引:0  
采用热蒸发法制备氧化锡薄膜,结合相关理论制定了一系列实验.在不同的工艺条件下制备了氧化锡薄膜,研究了温度、基片距离和环境压力对薄膜的影响,并利用X射线衍射仪、拉曼谱仪对薄膜进行了成分及结构测试,用阴极发光方法测定了薄膜的发光性质.  相似文献   

6.
采用化学水浴沉积法(CBD)制备了CdS薄膜,用扫描电镜(SEM)、能谱(EDS)、X射线衍射仪(XRD)、分光光度计进行检测.研究了退火温度对CdS薄膜表面形貌、成分、晶体结构和光学性能的影响.研究表明,CdS薄膜为微晶或是非晶态,S/Cd原子比在0.8左右,可见光透过率较高;随着退火温度的升高,薄膜结晶明显,但是透光率下降,禁带宽度范围在2.42~2.59eV之间.  相似文献   

7.
通过高温固相烧结法制备了Er3+掺杂以及Er3+/Yb3+共掺杂YBa3B9O18荧光粉.X射线衍射结果表明,Er3+/Yb3+的掺杂并没有改变基质的六方结构.应用325 nm激光激发Er3+掺杂YBa3B9O18,观察到了Er3+离子的特征发射峰,证明了Er3+离子与基质间的能量传递.应用980 nm激光分别激发Er3+掺杂以及Er3+/Yb3+共掺杂YBa3B9O18荧光粉,观测到了Er3+离子的上转换过程,该过程可通过能级图进行解释.实验结果表明Yb3+对Er3+的上转换发光有敏化作用.  相似文献   

8.
采用真空蒸发的方法在ITO玻璃上制备了CuPc 薄膜,并用分光光度计(U-3310)测试了四种不同厚度的CuPc薄膜的透射/吸收/反射率随波长变化情况,重点分析了其中的吸收规律.结果显示波段在340~370nm和570~720nm光吸收率基本上在90%左右,在480nm吸收率最低,大部分光都已透射.同时用扫描电子显微镜对薄膜进行了成分分析,对照能谱图可以看出样品中含有碳、氧、铜等元素,与酞菁铜薄膜元素组成成分相符.  相似文献   

9.
采用双室高真空磁控溅射装置在溅射功率60 W和工作气压0.5 Pa下直流磁控溅射沉积了调制比为1,设计调制周期18.0 nm的Fe/Ti纳米多层薄膜.利用横截面透射电镜(XTEM)、差示扫描量热分析仪(DSC)及小角和广角X射线衍射(SA/WAXRD)分析退火初期的扩散行为.实测调制周期16.2 nm,原始沉积Fe/Ti纳米多层薄膜由交替生长的纳米多晶α-Fe和α-Ti组成,调制界面清晰.Fe/Ti纳米多层薄膜热失稳过程包括亚层间的扩散、金属间化合物FeTi形成和长大3个阶段.退火温度为473 K时,保持与原始沉积相同的成分调制结构;退火温度升高到523 K,Fe与Ti亚层间发生互扩散,成分调制结构破坏,但相变未发生;达到最高退火温度623 K,过饱和固溶体α-Fe(Ti)和金属间化合物FeTi形成.  相似文献   

10.
采用双室高真空磁控溅射装置在溅射功率60 W和工作气压0.5 Pa下直流磁控溅射沉积了调制比为1,设计调制周期18.0 nm的Fe/Ti纳米多层薄膜.利用横截面透射电镜(XTEM)、差示扫描量热分析仪(DSC)及小角和广角X射线衍射(SA/WAXRD)分析退火初期的扩散行为.实测调制周期16.2nm,原始沉积Fe/Ti纳米多层薄膜由交替生长的纳米多晶α-Fe和α-Ti组成,调制界面清晰.Fe/Ti纳米多层薄膜热失稳过程包括亚层间的扩散、金属间化合物FeTi形成和长大3个阶段.退火温度为473 K时,保持与原始沉积相同的成分调制结构;退火温度升高到523 K,Fe与Ti亚层间发生互扩散,成分调制结构破坏,但相变未发生;达到最高退火温度623 K,过饱和固溶体α-Fe(Ti)和金属间化合物FeTi形成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号