首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
汽车转向系的作用是将驾驶者施予转向盘的力通过转向器、横直拉杆、转向节等传到转向轮,使转向轮发生偏转,从而使汽车沿着驾驶者希望的方向行驶。按转向能源的不同:分为机械转向系和动力转向系。现在的汽车大部分采用的是动力转向系,动力转向装置的动力源分别来自压缩空气、电力和液压。  相似文献   

2.
线控转向系统转向盘力回馈控制模型的研究   总被引:7,自引:0,他引:7  
罗石  商高高  苏清祖 《汽车工程》2006,28(10):914-917,947
根据轮胎和传统转向系的力学特性提出了利用车轮转角和车速计算得到转向盘回馈力的思路,并以此建立了线控转向系统转向盘回馈力控制模型,仿真和试验表明该模型能够满足路感要求。  相似文献   

3.
汽车的转向系是汽车的主要组成部分之一,转向系统的性能直接影响着汽车的操纵稳定性和安全性.随着液压技术的发展,液压转向系统已被广泛应用于汽车转向机构中,即在机械转向系的基础上加装转向液压式助力装置.汽车转向系统在使用过程中,由于机件磨损或损坏,转向性能会下降,即产生故障,而产生故障的部位主要有机械连接部分和液压部分两个方面.转向系统的机械连接部分的故障如转向系传动链过紧或卡滞、横拉杆球头部位松旷、转向节主销与衬套磨损、车轮轮毂轴承间隙过大等比较容易排除,关键是汽车的动力转向系统的液压油路中连接着转向泵、动力转向器、转向油罐和油管等,致使液压油路部分的故障不易诊断.检测液压动力转向系统最简捷而有效的方法就是设计一台动力转向系检测仪器.  相似文献   

4.
在分析全液压转向结构与转向偏差机理的基础上,设计了一种线控液压转向系统以实现车辆转向同步,消除转向偏差;针对现有方法确定的期望转向曲线可跟踪性差而无法实现转向同步,提出一种基于转向效率的期望转向曲线及其可行域确定方法,以最大、最小转向效率对应转向曲线为期望转向曲线可行域的上、下边界,确保期望转向曲线的可跟踪性;针对系统扰动不确定性及油液泄漏非线性,基于组合趋近律滑模控制,并引入饱和函数代替符号函数,在一定程度上抑制了控制系统的抖振;由于组合趋近律增益自适应性不足,导致车轮转角及角速度发生变化时,存在系统动态响应能力差的问题,通过分析车轮转角、角速度与趋近律增益的关系,制定了基于车轮转角及角速度的模糊规则表以自适应调整趋近律增益,实现增益模糊滑模控制,进一步提高油液补偿自适应能力和线控液压转向系统的鲁棒性;最后基于MATLAB/Simulink进行了仿真和试验验证。结果表明:提出的基于转向效率的期望转向曲线均具有良好的可跟踪性能;增益模糊滑模变结构控制具有良好的动态响应特性及控制精度,可有效地消除转向偏差,实现线控液压转向系统的同步转向。  相似文献   

5.
汽车动力转向装置亦称转向助力装置。它是在传统转向装置中增设了一些动力装置.在驾驶员的操纵或控制下。借助于发动机产生的动力。并将其转换为液压或气压来驱动转向轮偏转。从而达到汽车转向更加灵活省力的目的。也就是说,汽车在停车或低速行驶时转向,动力转向装置能够提供较大的转向助力.使操纵力减小(转向轻便),汽车在高速行驶时转向助力较小,使操纵力增大(转向沉重),避免方向“发飘”。  相似文献   

6.
姜书霞 《商用汽车》2014,(10):90-92
转向系统即改变汽车行驶方向的机构,由转向控制机构、转向传动装置、转向车轮和专用机构组成。根据助力转向系统的设计要求和评价指标,以某款4轴汽车起重机专用底盘的动力转向机构为例,简述联阀半分置式液压助力转向机构的设计计算过程。  相似文献   

7.
汽车转向系统的发展趋势与关键技术   总被引:2,自引:0,他引:2  
本文介绍了转向系统的发展趋势,并对机械转向、液压动力转向、电子控制液压动力转向和电子控制电动动力转向系统的发展动态和关键技术进行了阐述。  相似文献   

8.
汽车线控转向系统及关键技术   总被引:1,自引:0,他引:1  
汽车转向系统的基本性能是保证车辆在任何工况下转动转向盘时有较理想的操纵稳定性。随着汽车电子技术的不断发展和汽车系统的集成化,汽车转向系统从传统的液压助力转向系统(简称HPS系统)、电控液压动力转向系统(简称ECHPS系统),发展到现在逐渐推广应用的电动液压动力转向系统(简称EHPS系统)。  相似文献   

9.
转向助力油泵是汽车液压助力转向的动力泵,也可以说是动力转向系统的心脏.对于大型载重汽车来说,液压助力转向系统尤为重要.转向助力油泵出现了故障,不仅增大了汽车转向的阻力,严重时会诱发转向系统的其它故障,影响汽车的转向稳定性和行驶安全性.  相似文献   

10.
EQ1141液压助力转向系统主要由转向操纵机构、转向器、转向加力装置和转向传动机构组成。转向操纵机构是驾驶员操纵转向器工作的机构,转向器是把方向盘传来的转矩按一定传动比放大并输出,转向传动机构是把转向器输出的力矩传递给转向车轮的机构,包括从转向摇臂到转向车轮的零部件。  相似文献   

11.
In this paper, an analytical model with suitable vehicle parameters, together with a multi-body model is proposed to predict steering returnability in low-speed cornering with what is expected to be adequate precision as the steering wheel moves from lock to lock. This model shows how the steering response can be interpreted in terms of vertical force, lateral force with aligning moment, and longitudinal force. The simulation results show that vertical steering rack forces increase in the restoring direction according to steering rack displacement for both the inner and outer wheels. As lateral forces due to side-slip angle are directed toward the medial plane of the vehicle in both wheels, the outer wheel pushes the steering wheel in the returning direction while the inner wheel does not. In order to improve steering returnability, it is possible to increase the total steering rack force in both road wheels through adjustments to the kingpin axis and steering angle. This approach is useful for setting up a proper suspension geometry during conceptual chassis design.  相似文献   

12.
A hierarchical control structure is a more suitable structural scheme for integrated chassis control. Generally, this type of structure has two main functions. The upper layer manages global control and force allocation, while the bottom layer allocates realized forces with 4 independent local tire controllers. The way to properly allocate these target forces poses a difficult task for the bottom layer. There are two key problems that require attention: obtaining the nonlinear time-varying coefficient of friction between the tire and different road surfaces and accurately tracking the desired forces from the upper layer. This paper mainly focuses on longitudinal tire-road friction allocation and control strategies that are based on the antilock braking system (ABS). Although it is difficult to precisely measure longitudinal tire-road friction forces for frequently changing road surface conditions, they can be estimated with a real-time measurement of brake force and angular acceleration at the wheels. The Magic Formula model is proposed as the reference model, and its key parameters are identified online using a constrained hybrid genetic algorithm to describe the evolution of tire-road friction with respect to the wheel slip. The desired wheel slip, with respect to the reference tire-road friction force from the top layer, is estimated with the inverse quadratic interpolation method. The tire-road friction controller of the extended anti-lock braking system (Ext-ABS) is designed through use of the nonlinear sliding mode control method. Simulation results indicate that acceptable modifications to changes in road surface conditions and adequate stability can be expected from the proposed control strategy.  相似文献   

13.
Lateral Control of Commercial Heavy Vehicles   总被引:9,自引:0,他引:9  
Two nonlinear lateral control algorithms are designed for a tractor-semitrailer type commercial heavy vehicle. The baseline steering control algorithm is designed utilizing input-output linearization. To enhance the lateral stability and furthermore reduce tracking errors of the trailer, braking forces are independently controlled on the inner and outer wheels of the trailer. The coordinated steering and braking control algorithm is designed based on the multivariable backstepping technique. Simulations conducted using the complex model show that the trailer yaw errors under coordinated steering and independent braking force control are much smaller than those without independent braking force control.  相似文献   

14.
Two nonlinear lateral control algorithms are designed for a tractor-semitrailer type commercial heavy vehicle. The baseline steering control algorithm is designed utilizing input-output linearization. To enhance the lateral stability and furthermore reduce tracking errors of the trailer, braking forces are independently controlled on the inner and outer wheels of the trailer. The coordinated steering and braking control algorithm is designed based on the multivariable backstepping technique. Simulations conducted using the complex model show that the trailer yaw errors under coordinated steering and independent braking force control are much smaller than those without independent braking force control.  相似文献   

15.
介绍了解放CAll70P2Kll2型载货汽车动力转向机构的组成及工作原理。根据长期使用实践,对该动力转向机构可能产生的故障、产生故障的原因及故障排除方法介绍如下:一是转向沉重;二是左右转向轻重不同;三是行驶中前轮摆头;四是转向盘自由行程过大;五是转向轮回正困难;六是油泵噪声大;七是动力转向系统过热。  相似文献   

16.
In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces.  相似文献   

17.
In this paper, we propose a new yaw moment control based on fuzzy logic to improve vehicle handling and stability. The advantages of fuzzy methods are their simplicity and their good performance in controlling non-linear systems. The developed controller generates the suitable yaw moment which is obtained from the difference of the brake forces between the front wheels so that the vehicle follows the target values of the yaw rate and the sideslip angle. The simulation results show the effectiveness of the proposed control method when the vehicle is subjected to different cornering steering manoeuvres such as change line and J-turn under different driving conditions (dry road and snow-covered).  相似文献   

18.
Fuzzy-logic applied to yaw moment control for vehicle stability   总被引:6,自引:0,他引:6  
In this paper, we propose a new yaw moment control based on fuzzy logic to improve vehicle handling and stability. The advantages of fuzzy methods are their simplicity and their good performance in controlling non-linear systems. The developed controller generates the suitable yaw moment which is obtained from the difference of the brake forces between the front wheels so that the vehicle follows the target values of the yaw rate and the sideslip angle. The simulation results show the effectiveness of the proposed control method when the vehicle is subjected to different cornering steering manoeuvres such as change line and J-turn under different driving conditions (dry road and snow-covered).  相似文献   

19.
Via a conventional steering system the driver perceives desired and disturbing effects such as road feedback and resonance effects, respectively. They appear with overlapping frequency spectra within the driver's steering torque. This paper introduces a control algorithm that is suppressing periodic disturbances without affecting useful steering road feedback attributes as well as regular power assistance characteristic. This is realised by an integrated torque actuator within the steering column in conjunction with a conventional Hydraulic-assisted Power Steering (HPS) system.  相似文献   

20.
Via a conventional steering system the driver perceives desired and disturbing effects such as road feedback and resonance effects, respectively. They appear with overlapping frequency spectra within the driver's steering torque. This paper introduces a control algorithm that is suppressing periodic disturbances without affecting useful steering road feedback attributes as well as regular power assistance characteristic. This is realised by an integrated torque actuator within the steering column in conjunction with a conventional Hydraulic-assisted Power Steering (HPS) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号