首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
对钢-混凝土连续组合梁桥而言,负弯矩区混凝土板由于承受较大拉应力而开裂,从而引起钢筋及钢梁腐蚀等严重问题,影响了结构耐久性和承载能力。因此,负弯矩区混凝土板裂缝控制是设计中的重要一环,控制效果直接关系到结构的安全性和耐久性。该文结合最新的研究进展,对组合梁负弯矩区混凝土板的开裂特点、影响因素、裂缝宽度计算、裂缝控制措施等几个方面进行总结、阐述,希望能对连续组合梁桥负弯矩区的裂缝控制有所帮助。  相似文献   

2.
为了对比普通预应力钢混组合梁桥与后结合预应力钢混组合梁桥的性能差异,采用数值模拟的方法,建立了钢混组合梁桥有限元模型。基于实际钢混组合梁桥的施工过程及使用条件,详细分析了钢混组合梁桥的受力情况,对比了两种预应力钢混组合梁桥的材料用量、钢主梁应力,以及负弯矩区混凝土桥面板应力。结果表明,相对于普通预应力钢混组合梁桥,采用后结合预应力技术,对钢混组合梁桥的负弯矩区混凝土板施加预应力,可以使施工更加方便,从而降低施工难度,并提高材料的利用率,减少材料用量。  相似文献   

3.
为了解连续钢板组合梁力学性能特点,并改善其负弯矩区易开裂的状况,以长沙至益阳段高速公路扩容工程4×30m连续钢板组合梁桥为背景,采用ANSYS软件建立组合梁有限元模型,分析组合梁结构施工过程及成桥阶段的应力分布,研究支点负弯矩区桥面板裂缝控制措施。结果表明,施工阶段简支状态下,连续钢板组合梁混凝土桥面板基本处于受压状态,钢梁跨中最大Von Mises应力约为70.5MPa,翼缘焊钉顺桥向剪力从跨中向两侧支点逐渐增加,最大值12kN;汽车活载作用下,墩顶处混凝土桥面板顺桥向最大拉应力为2.9MPa,钢梁最大Von Mises应力约为64.6 MPa,焊钉顺桥向剪力峰值约为22kN。采用调整施工顺序、墩顶区现浇微膨胀纤维混凝土、加强负弯矩区纵筋配置等措施有效调整了结构应力分布,减小负弯矩区的裂缝宽度。  相似文献   

4.
连续组合梁桥负弯矩区混凝土板开裂机理的研究   总被引:3,自引:0,他引:3  
分析比较了混凝土受拉构件开裂机理与非预应力连续组合梁桥负弯矩区混凝土桥面板开裂机理的异同,给出了连续组合梁桥混凝土板开裂对组合梁截面力的分配的影响及其与混凝土板平均应变、全截面曲率的关系公式。  相似文献   

5.
为提高钢-混组合梁桥负弯矩区混凝土桥面板的抗裂性并简化现场施工工艺,提出新型钢-混组合梁桥负弯矩区超高性能混凝土(Ultra-high Performance Concrete,UHPC)接缝方案。以湖南省某桥为工程背景,进行1∶2缩尺模型抗弯试验研究;编制截面弯矩-曲率关系MATLAB程序,并与实测值进行对比,验证该程序可用于计算UHPC覆盖下的普通混凝土(NC)中钢筋应力;对现有NC裂缝宽度规范公式进行修正,提出考虑UHPC约束作用的组合梁负弯矩区NC最大裂缝宽度的建议公式;讨论钢-混组合梁桥负弯矩区UHPC湿接缝合理的纵桥向长度,分析UHPC层厚度及层内配筋对抗裂性能的影响。研究结果表明:新型UHPC接缝方案的抗裂性能和抗弯承载能力均满足工程要求,且接缝节点强度高于非接缝区预制部分强度;负弯矩作用下,试件沿梁高的应变较好地满足平截面假定,钢梁与混凝土板及UHPC与NC间的层间滑移量均较小;UHPC裂缝呈现“多而细”的特征,而NC裂缝呈现“少而宽”的特征,预制部分混凝土顶面最先开裂,之后UHPC-NC交界面、UHPC顶面、UHPC覆盖下的NC侧面依次出现裂缝;对于负弯矩区采用UHPC接缝的中小跨径钢-混组合连续梁桥,UHPC层的纵桥向长度宜为20%标准跨径,UHPC层厚度可根据实际工程设计要求确定,增大桥面板内钢筋直径可以提高负弯矩区混凝土的抗裂性能。  相似文献   

6.
对于连续组合梁桥支点负弯矩区桥面板受拉是设计的关键控制点,对于大跨径钢桁组合梁桥这一点尤为突出.同时,负弯矩区桁架下弦杆的内力突变亦应引起设计的注意.以某实际工程为依托,详细介绍了新型大跨径连续钢桁组合梁桥设计的关键技术,通过制定合理的施工工序重点解决了混凝土桥面板开裂问题;通过在下弦杆灌注混凝土形成双重组合截面重点解决了下弦杆的受压稳定问题.  相似文献   

7.
为提高组合梁负弯矩区桥面板抗裂性能,提高结构耐久性,提出一种钢-UHPC-NC组合梁结构形式,即在传统钢混组合梁的基础上,负弯矩区域采用薄层超高性能混凝土(UHPC)替代部分普通混凝土(NC).以主跨80 m钢混组合梁桥为背景,介绍了钢-UHPC-NC组合梁的构造特征,并借助有限元软件对该桥梁进行结构计算,重点分析了钢...  相似文献   

8.
推导了钢混组合梁桥基于弹性和基于弹塑性的承载能力设计计算方法,从而明确钢和混凝土在组合梁桥中的作用特性。总结了钢混组合梁桥相对于混凝土桥和钢桥的优势和难点,其中难点主要体现在负弯矩区开裂和整体倾覆稳定方面,并针对这两个难点,提出了设计解决方法和要点。  相似文献   

9.
连续曲线组合梁桥在竖向荷载作用下会产生弯扭耦合效应,并且其负弯矩区的钢底板也存在受压失稳问题。为改善负弯矩区的钢底板受力情况,提出连续曲线梁桥负弯矩区双重组合的结构形式,即由混凝土桥面板、槽形钢梁及底部混凝土板通过连接件相结合,形成共同受力的截面结构形式。在负弯矩区域采用双重组合结构形式,不仅可以提高钢底板的受压稳定性能,亦能增强截面的抗弯和抗扭刚度。为探讨该结构的受力性能,本文通过有限元数值模拟方法,对负弯矩区双重组合结构混凝土底板的长度和厚度2个变量进行参数分析,研究偏载作用下,连续曲线双重组合梁桥截面的纵向畸变应力和畸变角变化情况,为提出双重组合曲线梁桥的混凝土底板设计提供参考。  相似文献   

10.
连续组合梁桥设计中的关键问题是能否有效抑制负弯矩区混凝土的开裂及裂缝发展。混凝土的开裂会降低组合梁整体刚度,并会加速混凝土板内钢筋、抗剪连接件甚至钢梁的腐蚀,降低整体结构的耐久性。以阳泉市某高速公路匝道钢-混组合连续梁桥为背景,介绍了影响负弯矩区混凝土开裂的影响因素,运用MIDAS FEA建立空间精细化有限元模型计算了负弯矩区混凝土在设计荷载作用下和超载作用下的裂缝宽度,并对比分析了另外5种裂缝宽度计算方法。结果表明,G匝道钢-混组合连续梁桥混凝土裂缝宽度满足规范设计要求,且具有较大储备。汽车活载与温度梯度负温差效应对裂缝宽度影响较大。同时,汽车超载对裂缝的影响较为明显,应该严格限制超载。  相似文献   

11.
中小跨径钢混组合梁在高等级公路上,已得到广泛的使用。钢混组合梁负弯矩区受力复杂,混凝土桥面板破损情况时有发生,影响桥梁正常使用。本文详述了中小跨径钢混组合梁负弯矩区的设计方法,并探讨支点位移法对改善混凝土桥面板受力的影响,为该类桥梁负弯矩区的设计提供参考。  相似文献   

12.
李聪 《公路工程》2021,(1):18-22,80
钢-混组合梁桥体系在市政桥梁工程中近年得到了广泛应用,尤其是钢-混组合连续梁桥.在正弯矩区混凝土桥面受压,钢梁受拉,能充分发挥材料的优势;但在负弯矩区,混凝土桥面受拉会引起裂缝问题.综合使用超高性能混凝土、预应力技术、调整桥面板施工顺序、有效运用支点顶升法,提出了一种新型装置来控制钢-混组合连续梁负弯矩区拉应力和裂纹....  相似文献   

13.
以云南省保山市昌保高速公路一座3 m×30 m跨线天桥为工程背景,针对传统钢板组合梁负弯矩区混凝土顶板易开裂的问题,提出了一种预制“π”型钢-UHPC轻型组合梁结构,设计了适用于该组合梁的负弯矩区横向UHPC-NSC组合接缝和双榀“π”型梁间纵向UHPC接缝结构。介绍了UHPC材料的配制、钢-UHPC组合梁纵横向接缝设计、纵向接缝模型试验、负弯矩区1∶2缩尺模型抗弯加载试验,以及该桥的预制装配施工流程。相关结构设计、模型试验和工程实践经验可供实际工程参考。  相似文献   

14.
为解决钢-混组合梁负弯矩区桥面板的开裂问题,以桥面连续钢-混组合梁为研究对象,负弯矩区桥面板采用超高性能混凝土(Ultra-High-Performance Concrete,UHPC)代替传统普通混凝土,对其抗裂性能展开研究,并设计3根不同负弯矩区接口形式的钢-UHPC组合梁,采用一种独特的转角加载方式进行全过程静力加载试验,获得转角、临界开裂荷载、应变等关键试验数据;基于Abaqus的混凝土塑性损伤模型建立试验梁的非线性有限元模型,并对试验过程进行模拟。研究结果表明:钢-混组合梁负弯矩区采用UHPC,能明显提高负弯矩区的开裂性能、有效解决了负弯矩区桥面板的开裂问题;建议了合理的负弯矩区接口形式及负弯矩区UHPC纵向铺设长度取0.1L;采用黏结滑移理论,提出了简易的UHPC裂缝宽度计算公式。  相似文献   

15.
总结了钢混组合梁桥的结构特点和发展前景,并探讨了该结构体系存在的设计难题和要点。从构造、截面和体系三个层次,归纳了钢混组合梁桥的四个关键设计难题——钢混连接构造、负弯矩区开裂、负弯矩区底板屈曲和整体横向稳定,提出了设计对策和解决方法,推进钢混组合梁桥在我国的应用实践。  相似文献   

16.
该文以深圳市机场南路新建工程(50+82+50)m钢-混凝土组合连续梁桥为例,对钢-混凝土组合梁负弯矩区施工控制方法进行分析研究。研究结论可供同类工程参考。  相似文献   

17.
通过对采用分块预制桥道板的钢-混凝土组合连续梁的力学性能分析,得出不同剪力键布置形式对组合连续梁竖向位移、钢与混凝土间相对滑移及对钢梁应力的影响,以及两种不同施工方式对组合连续梁中钢梁应力、竖向位移及桥道板应力的影响。分析结果表明剪力键数量、布置间距及剪力键刚度是影响钢-混凝土组合梁的力学性能的重要因素,同时还表明:分区段安装预制桥道板比一次落架安装桥道板效果好,尤其是对负弯矩区桥道板,分区段安装可以减小负弯矩区段桥道板的受力,控制和预防早期施工阶段中负弯矩区段混凝土裂缝的产生。  相似文献   

18.
罗兵  马冰 《桥梁建设》2021,(1):58-65
为解决钢-混组合梁负弯矩区混凝土面板的开裂问题,采用薄层超高性能混凝土(UHPC)替代部分普通混凝土(NC),制作钢-UHPC-NC组合梁,对组合梁负弯矩作用下的受力性能进行研究.设计制作了2根钢-UHPC-NC组合梁(21 cm厚的C50混凝土+4 cm厚的UHPC)和1根钢-NC组合梁试件(25 cm厚的C50混凝...  相似文献   

19.
钢-混组合连续梁桥能够充分发挥钢材和混凝土两种材料的优点,在受力性能、综合造价、施工速度以及耐久性方面具有很多优势,在工程上应用越来越广泛。“抗拔不抗剪”技术通过释放连接件的抗剪作用,能够有效地解决钢-混组合连续梁桥负弯矩区混凝土的开裂问题。本文通过Midas建模,研究分析了“抗拔不抗剪”连接件组合梁与普通剪力钉组合梁的受力区别,结果表明:抗拔不抗剪连接件对负弯矩区桥面板轴力、应力和裂缝宽度的“消峰”作用非常明显,但会导致组合梁挠度和钢梁应力有所增加,设计时应综合考虑其对结构受力的影响。  相似文献   

20.
为解决双主梁钢板组合梁负弯矩区桥面板易开裂的难题,将超高性能混凝土UHPC(Ultra-High Performance Concrete)用于横向湿接缝的现浇.以瑞苍高速公路1联双主梁钢板组合连续梁桥为例,介绍了负弯矩区UHPC接缝设计方案,并与常规接缝技术方案进行对比;同时,采用有限元方法分析了UHPC接缝的受力性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号