首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为研究高速铁路多跨简支梁桥墩顶纵向刚度差对梁轨相互作用的影响规律,以合福客运专线段某多跨简支梁桥为例,建立考虑温度、活载、列车制动等荷载作用的16-32 m简支梁桥-双线轨道系统仿真模型,分析了复杂地形地质条件导致的墩顶纵向刚度差异对多跨简支梁-轨道系统受力特性的影响,采用荷载步法考虑多种荷载工况组合,基于国内外现行规范,对不同刚度差条件下系统的受力和变形情况进行评判,从梁轨相互作用角度探讨墩顶纵向刚度差限值的取值方法及建议。得到的主要结论包括:当墩顶纵向刚度满足规范建议刚度限值时,随着墩顶纵向刚度差的增大,钢轨应力、梁轨相对位移、墩顶水平位移等指标略有变化,但均不控制设计;当墩顶纵向刚度差异达100%时,刚度较大墩墩顶水平力快速增大,将导致桥墩设计困难。  相似文献   

2.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

3.
针对中国自主研发的CRTSⅢ型板式无砟轨道在运营阶段的受力变形问题, 以梁-板-轨相互作用原理为基础, 考虑钢轨、轨道板、自密实混凝土层及底座板等细部结构的空间尺寸与力学属性, 运用有限元法建立了高速铁路桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型; 计算了列车荷载作用下轨道及桥梁结构的挠曲力与位移, 分析了不同列车荷载作用长度、桥上扣件纵向阻力及墩台顶固定支座纵向刚度对挠曲力与位移的影响。研究结果表明: 在全桥加载情况下, 多跨简支梁桥上钢轨挠曲力在支座处表现为拉力, 跨中表现为压力, 大跨连续梁主桥上钢轨挠曲力在两侧边跨表现为拉力, 中间跨表现为压力, 单线加载时2种桥上有载侧钢轨挠曲力分别达到了38、53 kN, 约为双线加载时的1/2;轨道、桥梁结构纵向力与位移最大值不同时出现在同一工况下, 需要根据不同的检算部件选取最不利的列车荷载作用长度, 并将ZK活载中的集中力设置在跨中位置; 采用小阻力扣件可以改善钢轨受力与变形, 简支梁桥和连续梁桥上钢轨最大挠曲力分别减小了35%和22%, 钢轨纵向位移分别减小了7%和5%, 但轨板相对位移分别增大了26%和30%, 需加强观测以控制钢轨的爬行; 从轨道及桥梁结构的安全性与耐久性角度考虑, 建议将墩台顶纵向刚度控制在设计值的1.0~1.5倍范围内。   相似文献   

4.
依据梁轨相互作用原理, 提出了基于悬索桥成桥变形状态重构道床纵向阻力位移-力曲线的方法, 并从存在初始位移的5×32 m简支梁桥上无缝线路钢轨受力和变形两方面验证了重构方法的可行性; 结合多单元建模方法与U.L.列式法, 建立了考虑悬索桥初始内力和几何非线性的线-梁-索-缆-塔空间计算模型, 以某(2×84+1 092+2×84) m大跨悬索桥为例, 对比分析了不同工况下悬索桥初始内力与几何非线性对梁轨相互作用的影响。分析结果表明: 提出的道床纵向阻力重构方法能够避免桥梁初始变形对梁轨相互作用的影响, 使悬索桥上无缝线路计算模型能考虑初始内力的影响; 主缆垂度效应对各工况下梁轨相互作用的影响不足1%, 计算中可忽略该因素; 悬索桥初始内力主要影响挠曲、制动及断轨工况, 可使挠曲力、制动力及断缝值分别降低22.4%、12.7%和9.3%;大变形效应不仅可以改变挠曲力分布规律, 还可大幅减小断缝值, 降幅达22.4%;建议悬索桥上无缝线路在挠曲、制动及断轨工况下应考虑初始内力与大变形效应的影响, 伸缩工况下可将悬索桥简化为同等跨度的跨中纵向约束、梁端自由的连续梁桥进行计算; 建立的计算模型可为悬索桥上无缝线路设计提供精确的仿真结果。   相似文献   

5.
内蒙古包树黄河特大桥工程在黄河凌汛期恰好处于最大悬臂施工阶段,为保证其安全度汛,对此种不利工况进行作用响应分析及安全性验算.采用计算土弹簧刚度来模拟桩-土摩阻效应,并采用Maxwell模型以模拟墩顶新型粘滞阻尼器的墩梁位移效应,建立了该桥最大悬臂施工阶段数值仿真模型.在流凌期间实测流冰荷载、洪水荷载及风载等作用组合下,计算分析了该桥最大悬臂阶段桥墩和主梁的线形变化和受力特性.结果表明,流冰荷载单独作用对该桥最大悬臂阶段桥墩和主梁线形和内力影响有限,同时在各荷载工况下桥墩及主梁线形和内力均满足桥梁监控要求.  相似文献   

6.
合龙顶推施工是建造连续刚构桥施工过程中的关键工序,以跨越一不对称狭长山谷的连续刚构桥(65m+120m+65m)为依托,分析了桥墩墩顶位移、控制截面内力和应力改善情况,提出了大跨高低墩连续刚构桥合龙顶推力的计算方法.计算方法考虑了恒荷载产生的有利影响,以及预应力效应、高温合龙、收缩徐变产生的不利影响.大跨高低墩连续刚构...  相似文献   

7.
大跨度刚构-连续组合桥悬臂施工合龙时,受诸多因素影响,需通过施加顶推力的方式对桥梁结构线型进行调整,以达到最优的成桥状态。以某(72+3×128+72)m高墩大跨刚构-连续组合桥为工程背景,基于刚构桥顶推合龙工序,建立该桥施工仿真有限元模型,考虑温度变形和收缩徐变对墩顶变形的影响,对实际桥墩刚度及约束条件下的施工顶推力进行研究。研究结果表明:高温合龙及收缩徐变均会造成梁体工后缩短并引起墩顶位移,需在合龙前进行顶推;桥墩刚度及约束条件对顶推力均存在较大影响;综合考虑合龙温度、收缩徐变及桥墩刚度等因素确定的合理顶推力有效控制了梁体纵向变形,合龙误差满足相关要求。  相似文献   

8.
为获得大跨高墩长联桥上无缝线路设计的控制因素,探讨了大跨高墩长联桥墩台线刚度的合理取值.基于桥上无缝线路力的传递机理,建立了钢轨-主梁-桥墩-基础一体化力学模型;利用APDL参数化语言对ANSYS进行二次开发,建立了参数化优化模型,编制了桥墩线刚度优化程序.结合实际工程,分析了跨度64 m的有碴轨道简支梁桥墩顶纵向水平线刚度的限值.分析结果表明:梁轨快速相对位移及钢轨附加应力控制大跨高墩长联桥上无缝线路的整体设计, 该跨度为64 m的有碴轨道简支梁桥墩顶纵向水平线刚度的限值应超过750 kN/cm.   相似文献   

9.
讨论了铁路多跨简支梁桥不同计算图式对横向振动分析结果的影响,计算表明,单墩计算图式对等高桥墩的长桥及柔性桥墩适用性较好;当相邻桥墩的墩高或刚度相关较大时,可仅考虑该桥墩和相邻梁跨的振动耦联;一般情况下,应考虑相邻桥墩的耦联振动影响。  相似文献   

10.
客运专线斜拉桥梁轨相互作用设计参数   总被引:2,自引:0,他引:2  
采用非线性弹簧模拟桥梁和轨道的相互作用,根据相关文献的试验结果对模拟方法进行验证。以沪昆客运专线上某槽型截面独塔斜拉桥为算例,采用大型通用有限元软件ANSYS建立了塔-索-轨-梁-墩统一的空间有限元模型,对斜拉桥钢轨纵向力的传递规律进行了分析,研究了纵向阻力模型、斜拉桥结构体系、温度荷载与风荷载等设计参数对钢轨纵向力的影响。分析结果表明:钢轨纵向阻力可按理想弹塑性模型进行简化;与漂浮体系相比,塔梁固结可减小约30%的钢轨纵向力;在计算钢轨伸缩力时可按照梁体升温15℃和拉索升温40℃加载;在风速较大的地区,风力引起的斜拉桥上钢轨纵向力可超过60kN。  相似文献   

11.
大跨径连续刚构因为经济、施工简单和受力合理等优点,被我国大量采用,但是大跨径刚构桥成桥后混凝土收缩徐变和长期作用及温度变化将对桥梁主梁和桥墩的变形有较大影响。文中结合工程实例,充分考虑确定顶推力的主要因素,埘连续刚构桥合龙前顶推量取值进行分析研究,提高桥梁结构的受力性能。  相似文献   

12.
半整体式桥台无伸缩缝桥静力分析   总被引:5,自引:0,他引:5  
为了克服桥梁伸缩缝病害,考虑了桥梁上部结构、下部结构和基地土的共同作用,建立了半整体式桥台无伸缩缝桥的静力计算模型。以一座长100 m PC连续箱梁桥为例,对该桥在重力、车辆和季节性温度变化荷载作用下进行了弹性大变形分析,对相应的有伸缩缝桥和整体式桥台无伸缩缝桥分析结果进行了对比。结果表明:半整体式桥台无伸缩缝桥主梁的弯矩、剪力、挠度和下部结构的轴力与有伸缩缝桥接近,但主梁中出现了轴力,下部结构弯矩和剪力较有伸缩缝桥大,说明半整体式桥台无伸缩缝桥消除了伸缩缝的病害,结构整体刚度大,是一种有应用推广价值的桥型。  相似文献   

13.
为研究实际施工过程和混凝土收缩徐变对连续刚构桥成桥内力状态的影响以及不同内力状态下主桥的地震反应差异,以某大跨高墩连续刚构桥为背景,建立了MIDAS/Civil施工阶段分析模型,并讨论了各施工因素对主桥内力状态的影响;基于等效荷载法提出了适用于连续刚构桥的内力等效荷载计算方法,通过将主桥内力进行分解,以若干简单的内力等...  相似文献   

14.
为了研究地震作用下深水薄壁空心桥墩内外域水体动水压力对连续刚构桥梁动力响应的影响,应用流固耦合有限元理论,考虑重力、纵向预应力和动水压力,建立了庙子坪岷江大桥连续刚构桥梁的计算模型,并采用实测的地震波进行计算.结果表明:动水压力对连续刚构桥梁自振频率和振型的影响不大,前30阶频率降低率最大值约为8%,箱梁各部分横向位移峰值增量在10%~20%之间,主墩内力峰值增量最大值约170%,箱梁内力峰值增量最大值约75%;地震加速度、桥墩入水深度是影响动水压力的重要因素.  相似文献   

15.
连续刚构桥合拢温度的合理确定及高温合拢对策   总被引:4,自引:0,他引:4  
以一座大跨预应力混凝土连续刚构桥为工程背景,分析了不同的合拢温度对桥梁结构内力的影响,并指出合拢温度对于连续刚构桥设计的影响主要是对桥墩与桩等有关控制截面最不利组合内力的影响,在一般情况下选择低温合拢对结构受力是有利的;结合该桥高温合拢的实际情况,提出了连续刚构桥在高温合拢情况下采取预施加反顶力的施工对策,并通过结构分析与工程实践证明了采用该措施的有效性。  相似文献   

16.
采用SAP2000软件建立了某整体式斜交连续梁桥的三维有限元模型,通过非线性时程分析,研究了整体式斜交连续梁桥在地震作用下的受力特性及抗震性能,并探究了跨数、斜交角、台后土密实度和墩高等主要结构及基础参数对该类桥梁地震响应的影响。研究结果表明:整体式斜交连续梁桥中震害变形主要集中于桥台桩,桩顶截面在峰值加速度为0.4g的地震作用下形成塑性铰时,墩顶支座无破坏,且桥墩几乎无损伤;桥台桩位移及纵桥向弯矩的最大值均位于桩顶,而横桥向弯矩最大值可能位于桩顶或桩身反向弯矩峰值处;随着跨数的增加,整体式斜交连续梁桥的地震响应尤其是墩顶支座剪切应变及桥面转角明显增大,当跨数由单跨增加到4跨时,地震响应均增加了1倍以上,墩顶支座剪切应变甚至增加近2倍;随着斜交角的增加,桩顶纵桥向位移、桩顶截面屈服面函数值及中跨转角明显增大,斜交角为60°时,桩顶纵桥向位移增加了3倍以上,斜交角为45°时,墩顶支座剪切应变最大;随着台后土密实度的增加,各构件纵桥向位移响应与墩顶支座的纵向剪切变形降低,桥台桩、桥墩纵桥向位移及墩顶支座纵向剪切变形分别减小了12.9%、9.3%和9.5%;随着墩高的增加,墩顶位移明显增加,而支座剪切应变明显降低,但桩顶位移及桩顶截面屈服面函数值几乎不变;当墩高从4 m增大到9 m时,墩顶漂移率增大了42.1%,墩顶支座剪切应变减小了57.5%。   相似文献   

17.
桥上无缝线路由于梁、轨的相互作用,钢轨会受到附加纵向力的作用,尤其在特大型长联连续梁桥上钢轨受到的纵向附加力更是不容忽视。本文建立了以轨道、桥梁、支座、墩台、基础为整体结构的纵向附加力计算空间有限元模型,计算了某特大型长联连续梁桥上钢轨的温度力。分析了:小阻力扣件铺设位置、铺设长度对钢轨伸缩附加力的影响;钢轨伸缩调节器铺设位置对钢轨温度力的影响。综合分析结果提出了该特大型长联连续梁桥上无缝线路的铺设方案。  相似文献   

18.
根据欧洲混凝土规范CEB-FIP 1990徐变计算公式,运用VB语言编写了考虑温湿度变化的徐变系数计算程序,嵌入武汉二七长江大桥有限元模型中,研究温湿度变化环境下主梁的变形和内力变化特征,获得温湿变化对三塔结合梁斜拉桥徐变效应的影响作用.研究结果表明:温度升高,混凝土徐变增大,钢主梁长期挠度也增大;相对湿度增加,混凝土徐变减小,钢主梁长期挠度也减小;一季度温度较低、湿度较大,温湿度同时变化时混凝土徐变较小,此时吊装混凝土桥面板引起的钢主梁挠度和应力值也较小,可见混凝土桥面板的吊装宜选择在温度低、湿度大的季节进行.  相似文献   

19.
根据多梁式斜梁桥结构及其横向受力特点,提出了“弹性支承刚性横梁法”进行跨中荷载横向分布的计算.计算时,刚性横梁弹性支承在各纵梁上,在单位移动荷载作用下,可求得横梁的弹性支承反力,其值即为纵梁的荷载横向分布影响线坐标值.通过最不利横向布载可求出斜梁桥跨中荷载横向分布系数,从而进行纵梁的受力计算,此法简单合理,为斜梁桥的设计提供了一种方便的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号