首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
本文探讨了用计及剪切和翘曲影响的薄壁梁有限元方法来计算大开口船弯扭耦合振动的特性,导出了抗扭箱对增加船体扭转附加刚度的计算公式,并作了数值计算和实验研究。按本文方法编制的计算程序,除能进行弯扭耦合振动分析外,还能计算垂向或水平扳动以及扭转振动。  相似文献   

2.
本文介绍了集装箱船扭转强度及总强度结构设计方法,并对集装箱船结构加强方式进行了详细研究,分别计算了甲板加厚、内舷顶板加厚、外舷顶板加厚、增设横向抗扭箱等多种结构加强方式下的抗扭加强效果,从中找出较住的抗扭结构加强方式。  相似文献   

3.
文章介绍了大开口船舶扭转强度的薄壁杆件理论计算,以120 TEU内河集装箱船为例,详细计算了该船的扭转强度及弯扭合成应力;并对120 TEU集装箱船结构加强方式进行了研究,从中找出较佳的抗扭结构加强方式,得到一些具有工程应用价值的结论.  相似文献   

4.
1700TEU集装箱船甲板舱口角隅疲劳强度评估   总被引:1,自引:0,他引:1  
在消化吸收德国劳氏船级社(GL)规范的基础上,对沪东造船厂建造的1700TEU集装箱船大开口甲板舱口角隅进行了疲劳强度分析和评估,并讨论了主要参数对采用简化疲劳强度评估方法所得到的评估结果的影响。计算结果表明,该方法对集装箱船大开口甲板舱口角隅处的结构设计具有一定的实用意义和参考价值。  相似文献   

5.
对长江航运有代表性的1000t和2000t大开口分节驳的结构强度进行了实船试验、模型试验、全船有限元分析以及薄壁梁理论计算等全面研究,表明全船有限元分析可作为设计依据,应用薄壁梁的弯扭理论计算该类船中部的应力,精度能满足工程要求。  相似文献   

6.
本文首先介绍了利用薄壁杆件理论来计算大开口船舶的扭转强度。然后以96箱内河集装箱船为例,进行了该船的扭转强度校核。  相似文献   

7.
3800箱集装箱船总纵强度计算两种方法对比研究   总被引:3,自引:2,他引:1  
本文对3800箱集装箱船进行了整船有限元分析,计算了在设计静水弯矩、波浪弯矩、水平弯矩和扭矩作用下的船体总纵强度,并与基于薄壁梁扭转理论的总纵强度计算结果进行了比较,对两种方法的应用前景作出评论。  相似文献   

8.
复杂薄壁剖面弯、剪、扭特性参数的有限元计算   总被引:3,自引:1,他引:2  
集装箱船及其它大开口船舶的弯扭强度计算可合理地简化为复杂断面的薄壁梁计算。这种计算的第一步工作是计算剖面的弯、剪、扭特性,包括以下诸项内容:(1)剖面惯性主轴位置与方向,剖面抗弯惯性矩;(2)在横向剪力作用下剖面内剪流的分布以及有效抗剪面积;(3)剖面圣维南扭转常数,剖面翘曲坐标,剖面扇性矩与剪切中心位置。  相似文献   

9.
以5 000 DWT多用途船为例,按照中国船级社《集装箱船结构强度直接计算指南》对多用途船的甲板舱口角隅局部结构进行了疲劳强度评估。基于设计波法对多用途船的载荷进行长期预报并确定设计波参数,利用有限元软件MSC.Patran建立了有限元模型,对12个设计波下的有限元模型进行了分析。计算结果表明,本方法对多用途船大开口甲板舱口角隅处的结构设计具有一定的实用意义和参考价值。  相似文献   

10.
提高大开口船舶弯扭组合强度的方法研究   总被引:1,自引:0,他引:1  
张健  尹群 《船海工程》2006,35(1):4-7
基于CCS规范,以某集装箱船为例,介绍一种大开口船舶弯扭组合应力的计算方法,总结出大开口船舶扭转翘曲应力在船长方向及横剖面上的分布规律;利用五种方案对船体某些部位进行加强,经过计算,定量比较这些方案对改善船舶扭转强度的优劣,最后得出加强抗扭箱平台板是最佳降低翘曲应力的方法的结论。  相似文献   

11.
Structures of ultra large container ships (ULCS) are characterized by large deck openings and low torsional rigidity. It is essential to comprehensively figure out their collapse behaviors under pure torsion with both model experiments and numerical simulations, making an evaluation of their ultimate torsional strength. In this paper, a similar scale model of a 10,000TEU container ship has been designed and manufactured first, in which both geometric similarity and strength similarity are taken into account. Next the collapse behaviors of the test model are detailedly illustrated with both experimentally and numerically obtained results. Then discussions on warping or shear buckling deformations involved in the collapse process of the structure are conducted with extended numerical simulations. Finally, the ultimate torsional strength of the true ship is evaluated according to the similarity theory. Results show that it is the yielding and shear buckling of the side shells that causes the failure of the hull girder under pure torsion. Further nonlinear finite element analysis demonstrates that it may either have warping or shear buckling deformations in the torsional collapse process of the hull girder with a large deck opening, depending on the local rigidity distribution of side shells, which has a significant effect on the ultimate torsional strength of the hull girder.  相似文献   

12.
This is Part II in a series of papers. Part I (J Mar Sci Technol 13:154–163) deals with an approach employed to construct a simplified FE model using a 3D compartment model available from the beginning of the ship design process. This paper begins by describing the limitations of an analytical approach based on shear warping beam theory for assessing torsional strength. Next, the structural parts of a container ship that have a negligible effect on hull girder bending strength and torsional strength are determined. This is verified by removing these parts from a conventional FE model and comparing the results obtained using this modified model with those yielded by the original model. The fore end part, the aft end part and the deck house are examined. Since these parts have complicated structures and relevant drawings for them are issued later than cargo structure drawings, modeling them exactly can result in a delay in the completion of the full ship FE model. This paper also verifies the validity of the simplified FE model built by applying the method proposed in Part I and comparing the results obtained with it with those given by a conventional full ship FE model. The stresses on hatch coaming top, the maximum diagonal elongations of the hatch coaming, and the maximum hatch corner movements are evaluated to check the validity of the simplified model.  相似文献   

13.
以某3 100 TEU巴拿马型集装箱船为例,建立集装箱船体全船结构三维有限元动力学分析的计算模型,对船体结构进行实特征值、有阻尼瞬态响应的计算分析;采用Lanczos方法计算特征值;采用模态方法进行瞬态响应分析.分析结果表明,该船在运营过程中容易出现扭转振动,需要对驾驶甲板的侧翼结构进行修改设计,但其振动强度在总体上是...  相似文献   

14.
《Marine Structures》2004,17(5):355-384
Container ship structures are characterized by large hatch openings. Due to this structural property, they are subject to large diagonal deformations of hatch openings and warping stresses under complex torsional moments in waves. This necessitates torsional strength assessment of hull girder of container ships in their structural design stage. In this paper, a practical method for torsional strength assessment of container ship structures with transparent and consistent background is discussed based on the results from up-to-date analyses. In order to estimate the torsional response characteristics as accurately as possible, three-dimensional Rankine source method, after being validated by tank tests, is employed for estimation of wave loads on a container ship, and FE analyses are conducted on the entire-ship model under the estimated loads. Then, a dominant regular wave condition under which the torsional response of the container ship becomes maximum is specified. Design loads for torsional strength assessment that give torsional response equivalent to the long-term predicted values of torsional response are investigated based on the torsional moments on several container ships under the specified dominant wave condition. An appropriate combination of stress components to estimate the total hull girder stress is also discussed.  相似文献   

15.
2750 TEU集装箱船的局部振动评估   总被引:1,自引:0,他引:1  
吴嘉蒙  陈曙梅 《船舶》2008,19(5):10-16
通过半解析法和有限元法对一艘2750TEU集装箱船进行了机舱、尾部及甲板室的局部振动预报,包括板格、筋和板架的首阶固有频率以及罗经甲板和舷侧板架的固有频率和振动模态。计算表明,2750TEU集装箱船的局部振动性能良好,满足亚临界动态设计的设计衡准。指出对采用低速机的船舶而言,用亚临界动态设计方法是可行的。  相似文献   

16.
张爱锋  万正权 《船舶力学》2004,8(5):100-108
在船体梁扭转极限承载能力的有限元计算中,对于比较大而且形状复杂的结构,需要采用足够多的单元数来模拟其真实的破坏模态,因而会耗费大量的CPU计算时间和硬盘空间,并且往往因为单元数太多而使数值计算变得不现实.本文采用弹塑性有限元对箱形薄壁梁进行了一系列扭转屈曲数值计算,分析了不同参数对箱形薄壁梁极限扭矩的影响,根据计算结果提出了一个修正粗糙网格有限元计算结果的修正系数,采用此修正系数可以在数值计算中节省大量的CPU计算时间和硬盘空间.  相似文献   

17.
The paper presents an outline of the advanced theory of thin-walled girders. The improvement includes shear influence on torsion as an extension of shear influence on bending. The analogy between bending and torsion is recognized and pointed out throughout the paper. Complete differential equations of coupled flexural and torsional vibrations for a prismatic girder are derived. In addition, the 8 d.o.f. beam finite element, utilizing the energy approach, is constituted with stiffness and mass matrices, and load vectors. The paper describes determining of geometrical properties of multi-cell open cross-sections by employing the strip element method. Numerical procedures for vibration analyses are outlined. Furthermore, dry natural vibrations of a VLCS (Very Large Container Ship) are analysed by 1D FEM model as a prerogative for hydroelastic analyses of these relatively flexible vessels. Influence of transverse bulkheads is taken into account by increasing torsional stiffness of the ship hull proportionally to their deformation energies. Validation of 1D FEM model is checked by correlation analysis with the vibration response of the fine 3D FEM model.  相似文献   

18.
双体船的连接桥结构强度是设计时需要重点考虑的问题,采用全船有限元法来分析计算要耗费大量的时间。将连接桥结构简化为一种梁模型,采用简化解析计算方法来分析其扭转强度和横向强度,并与实船的全船有限元法的对比分析结果表明:简化模型和计算方法是可行的,可应用于双体船初步设计阶段,估算连接桥的结构强度,指导结构设计。  相似文献   

19.
A compliant tower is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is modeled as a combination of a linear spring and a torsional spring, along with parallel linear and torsional dampers(Kelvin-Voigt model). The superstructure adds to the kinetic energy of the system without affecting the potential energy, thereby reducing the natural frequencies. The weight of the superstructure acts as an axial compressive load on the beam, reducing its natural frequencies further. The empty space factor due to the truss-type structure of the tower is included. The effect of shear deformation and rotary inertia are included in the vibration analysis; with the non-uniform beam mode-shapes being a weighted sum of the uniform beam mode-shapes satisfying the end condition. The weights are evaluated by the Rayleigh-Ritz(RR) method, and verified using finite element method(FEM). The weight of the superstructure acts as an axial compressive load on the beam. Kelvin-Voigt model of structural damping is included.A part of the structure being underwater, the virtual added inertia is included to calculate the wet natural frequencies. A parametric study is done for various magnitudes of tip mass and various levels of submergence. The computational efficiency and accuracy of the Rayleigh-Ritz method, as compared to the FEA, has been demonstrated. The advantage of using closed-form trial functions is clearly seen in the efficacy of calculating the various energy components in the RR method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号