首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY

Two strategies are investigated for controlling a semi-active damper to track a prescribed force demand signal: (i) ‘open loop’ control, using a model of the damping force versus velocity characteristics; and (ii) force feedback (closed loop) control.

The damping characteristics and switching transients of a prototype damper were measured, and used to develop a mathematical model of the dynamics of the damper. The two control strategies were investigated using an idealised (constant velocity) test. Their performance was also simulated and measured under realistic operating conditions using the Hardware-in-the-Loop testing method.

Open loop damper control was generally found to give superior performance to force feedback control, due to its smaller phase lag at high frequencies.  相似文献   

2.
This paper describes active agricultural tractor cab suspensions based on optimal control theory. Control algorithms based on time invariant state feedback and on adaptive control are developed and studied. The influence of different observers and measurement noise levels on the vibration damping capacity are studied as well as the power consumption for the suspensions.

The principle for the adaptive algorithm is based on the parameters in the penalty matrices being varied so that the resulting controller always strives to make optimum use of available travel space. The feedback and observer gains are also changed depending on the characteristics of the vehicle's frame movements.

The results show that it is possible to design an effective active suspension, but that the choice of feedback gains must be dependent on the surface characteristics to reach satisfactory vibration damping performance.  相似文献   

3.
Output force of a nonlinear two-force-element (TFE) excited by a stationary random process is stationary random as well and is described by its autocorrelation function.

Dependence of this autocorrelation function on the autocorrelation functions of the excitation process and of its velocity and on their crosscovanance function is indicated by the linearization (describing) function.

This paper describes the determination of the linearization function for a complex TFE composed of a parallel spring and damper, both having characteristics described by polynosmial functions. Knowledge of the linearization function is necessary for carrying out the second order linearization procedure of nonlinear dynamic systems excited by stationary random processes described in '1', '2', '3'.  相似文献   

4.
磁流变减振器阻尼力和电流的精确控制是实现半主动悬架的算法、达到整车系统控制目标的必要条件,但由于磁流变液的温度敏感性使得磁流变减振器阻尼力强烈依赖温度变化,带来模型失配和控制效果弱化的问题。基于此进行磁流变减振器在不同电流和速度下的高低温(-40℃~80℃)示功试验研究,揭示磁流变减振器在低温下丧失阻尼特性而表现出刚度特性,在高温下黏滞阻尼退化的特性规律。为了描述磁流变减振器随温度变化的复杂非线性特性,提出一种新的磁流变减振器变温参数化双曲滞回模型,该模型引入温度作为自变量,对磁流变减振器黏滞阻尼、刚度及滞回特性进行准确描述。为了面向实际减振器控制,在此双曲滞回模型的基础上,进一步线性化求逆得到磁流变减振器温度修正的逆模型。该逆模型输入预期阻尼力和减振器压缩速度作为自变量,可以直接给出满足减振器力值约束的控制电流。研究结果表明:相较于未进行温度补偿的逆模型,该逆模型能够平均提升12.79%的电流控制精度以及12.53%的控制力跟踪精度;进行温度修正的模型能够在仿真中还原更真实的磁流变减振器力学特性,逆模型能够给出更精确的控制电流,为充分发挥磁流变减振器的能力、实现车辆的半主动悬架精确控制提供了理论和方法指导。  相似文献   

5.
Summary This paper presents an investigation of the feedback control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers. A cylindrical MR damper is designed and manufactured by incorporating a Bingham model of aMR fluid which is commercially available. After evaluating the field-dependent damping characteristics of the MR damper, a full-vehicle suspension system installed with 4 independent MR dampers is constructed and its governing equations of motion which include vertical, pitch and roll motions are derived. A H 8 controller which has inherent robustness against system uncertainties is formulated by treating the sprung mass of the vehicle as uncertain parameter. This is accomplished by adopting the loop shaping design procedure. For the demonstration of a practical feasibility, control performance characteristics for vibration suppression of the proposed MR suspension system are evaluated under various road conditions through the hardware-in-the-loop simulation (HILS) methodology.  相似文献   

6.
Summary This paper presents an investigation of the feedback control performance of a full-vehicle suspension system featuring magnetorheological (MR) dampers. A cylindrical MR damper is designed and manufactured by incorporating a Bingham model of aMR fluid which is commercially available. After evaluating the field-dependent damping characteristics of the MR damper, a full-vehicle suspension system installed with 4 independent MR dampers is constructed and its governing equations of motion which include vertical, pitch and roll motions are derived. A H 8 controller which has inherent robustness against system uncertainties is formulated by treating the sprung mass of the vehicle as uncertain parameter. This is accomplished by adopting the loop shaping design procedure. For the demonstration of a practical feasibility, control performance characteristics for vibration suppression of the proposed MR suspension system are evaluated under various road conditions through the hardware-in-the-loop simulation (HILS) methodology.  相似文献   

7.
This paper describes a multiport approach to computer-aided modeling of vehicle dynamics. The modeling approach produces models that are suitable for the interactive design and evaluation of complex control strategies. The vehicle model which can be used for ride and handling analysis, is built from modular components. The components are programmed using the syntax of the computer aided control system design (CACSD) program EASYS. Seven modeling components are used to create a three-dimensional vehicle dvnamics model. The model is flexible enoug-h to simulate any suspension design with revolute joints.

Each component of the model consists of a FORTRAN subroutine and a main calling module called a macro. To simplify the process of model building, the modeling components in the car model are designed to represent physical elements, such as the spring, damper, link or tire. To create a model, the components, which are represented by blocks, are interconnected through points, located on the blocks, called pons. These ports have been designed to simulate the location of the connection points between the physical elements, as observed in real systems. The construction of multibody models within a CACSD program offers the flexibility of simultaneous interactive simulation of the three-dimensional dvnamics and evaluation of the desien of the controls.

Although modeling of multibody systems using FORTRAN components has been pioneered by Chace, Haug and Orlandea; and bond graph modeling of multibody systems has been investigated by Bos, this approach is novel because:-

The model is included in the control system design program (EASYS). This arrangement allows the designer to exploit the advanced control design tools available in the program. Furthermore, this approach significantly reduces the computation time required for running the model after parameters modification.

The model is built from components that are interconnected by ports which represent the actual physical location of the connection points between the elements. The multiport approach simplifies the model building process for multibody systems. This simplification is achieved by reducing the model of a multibody system to a block diagram form.  相似文献   

8.
An Experimental Investigation of Preview Control   总被引:3,自引:0,他引:3  
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car 'Hardware-in-the-loop' (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

9.
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car ‘Hardware-in-the-loop’ (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

10.
Additional 4WS and Driver Interaction   总被引:1,自引:0,他引:1  
This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

11.
汽车磁流变半主动悬架的控制研究   总被引:6,自引:0,他引:6  
为了改善汽车的乘坐舒适性和行驶安全性,提出了一种汽车磁流变半主动悬架的控制策略。首先,设计了磁流变减振器的工作模式,通过试验获得了其速度特性和力学特性,建立了磁流变减振器的数学模型;其次,建立了带磁流变减振器的二自由度车辆简化模型及其参数表;最后,基于双环控制理论,设计了一种控制系统,其外环产生理想的结构阻尼力,内环调节电流驱动器的电流,以使磁流变减振器实时地产生控制阻尼力。仿真结果表明:以磁流变减振器为基础,通过半主动控制技术,悬架系统的振动动态性能得到了有效的控制。  相似文献   

12.
In this paper, analytical characterization of the magneto-rheological (MR) damper is done using a new modified algebraic model. Algebraic model is also more preferable because of its low computational expenses compared to differential Bouc-Wen’s model which is highly computationally demanding. This model along with the obtained model parameters is used as a semi-active suspension device in a quarter car model and the stationary response of the vehicle traversing on a rough road is obtained. The control part consists of two nested controllers. One of them is the system controller which generates the desired damping force and the other is the damper controller which adjusts the voltage level to MR damper so as to track the desired damping force. For the system controller a model reference skyhook Sliding Mode Controller (SMC) is used and for the damper controller a continuous state algorithm is built to determine the input voltage so as to gain the desired damping force. The analytical model is subsequently used in the quarter car vehicle model and the vehicular responses are studied. A simulation study is performed to prove the effectiveness and robustness of the semi-active control approach. Results show that the semi-active controller can achieve compatible performance as that of active suspension controller except for a little deterioration.  相似文献   

13.
Active Suspension Control to Improve Vehicle Ride and Handling   总被引:3,自引:0,他引:3  
In practice most active vehicle suspension work can be traced to two sources, Lotus' modal control and Karnopp's skyhook damper. A model is developed which allows comparison of different active suspension control algorithms. The Lotus modal control algorithm is reviewed, and compared with Karnopp's skyhook damper. It is shown that a tight inner closed loop allows the Lotus algorithm to achieve the inertial damping described by Kamopp for a single comer or quarter car. It is suggested that to achieve simultaneously high inertial damping and good disturbance rejection an inner force loop is desirable. A vehicle control scheme is presented which combines the Lotus modal decomposition with Karnopp's skyhook damper, allowing nearly optimal ride and simultaneously permitting modification of vehicle handling properties.  相似文献   

14.
Based on a mathematical model of an actively suspended vehicle, the effects of the following issues in deriving the control laws are studied:

(a)representation of the ground surface as integrated or filtered white noise.

(b)cross-correlation between left and right track inputs.

(c)wheelbase time delay between front and rear inputs.

The third of these issues is shown to be by far the most important. Considerable improvements at the rear suspension can be obtained if the control law includes the information that the rear input is simply a delayed version of the front input. Effectively this provides feedforward terms in the control law for the rear actuator. For the full state feedback case, these improvements are indicated by reductions in the rear body acceleration and rear dynamic tyre load of around 20% and 40% respectively with no increase in suspension working space.  相似文献   

15.
Vibration isolation characteristics of a sequential hydraulic damper, employing external pressure relief valves, are investigated via analytical means. The sequential hydraulic damper is modelled as a nonlinear dynamical system incorporating nonlinearities due to orifice flows, gas spring and pressure relief mechanisms. The damping characteristics of the sequential hydraulic damper, are compared to those of a constant orifice and a semi-active sequential damper, and discussed in view of their vibration isolation performance. It is established that the performance characteristics of the sequential hydraulic damper are similar to that of a semi-active sequential damper. A tuning methodology to achieve appropriate control of the resonant peak and effective vibration isolation is proposed. The shock and vibration isolation performance of the vehicle model employing a sequential damper are evaluated and compared to those of the vehicle model employing a constant orifice hydraulic damper. It is concluded that the vehicle ride performance can be improved considerably using an adequately tuned sequential damper.  相似文献   

16.
In this paper, a magneto-rheological (MR) damper-based semi-active controller for vehicle suspension is developed. This system consists of a linear quadratic Gauss (LQG) controller as the system controller and an adaptive neuro-fuzzy inference system (ANFIS) inverse model as the damper controller. First, a modified Bouc–Wen model is proposed to characterise the forward dynamic characteristics of the MR damper based on the experimental data. Then, an inverse MR damper model is built using ANFIS technique to determine the input current so as to gain the desired damping force. Finally, a quarter-car suspension model together with the MR damper is set up, and a semi-active controller composed of the LQG controller and the ANFIS inverse model is designed. Simulation results demonstrate that the desired force can be accurately tracked using the ANFIS technique and the semi-active controller can achieve competitive performance as that of active suspension.  相似文献   

17.
电流变减振器台架性能试验研究   总被引:1,自引:0,他引:1  
通过台架试验对电流变减振器性能进行了考察,得到了较好的示功图和速度特性曲线;讨论了电场强度、气室压力、间隙大小、电流变液性能等对电流变液体减振器压缩阻尼力和回复阻尼力的影响,对阻尼力的理论计算值与试验结果进行了对比,指出了产生误差的原因。所设计的充气式减振器示功图曲线光滑饱满,表明其结构良好,可满足工程实际要求。  相似文献   

18.
Active Damping in Road Vehicle Suspension Systems   总被引:4,自引:0,他引:4  
Low order, linearized dynamic models of road vehicle suspension systems are analyzed to provide insight into the benefits of suspensions incorporating generalized velocity feedback compared with conventional passive suspensions. Damping forces from passive dampers are supplemented by forces generated by an active element requiring a power supply. A simple criterion is developed which indicates whether or not the introduction of activedamping forces will result in significant benefit for pneumatic tired vehicles.

An extended active suspension concept involving a high-gain load leveler as well as active damping is analyzed. The realization of active or semi-active damping forces through electrical or hydraulic means is briefly discussed.  相似文献   

19.
一种用于车辆半主动悬架控制的磁流变阻尼器模型   总被引:3,自引:0,他引:3  
文中对适用于车辆半主动悬架控制器设计的磁流变阻尼器模型进行研究.首先分析阻尼力与位移、速度以及输入电流之间的关系,并结合现有阻尼器模型的优点,提出一种精确的便于控制的双曲正切磁滞模型.接着,将磁流变阻尼器安装在硬件在环仿真平台上进行试验,利用试验得到的阻尼器动态特性数据,进行阻尼器模型的参数辨识和曲线拟合.最后,将基于拟合参数的模型仿真结果与试验数据进行比较,验证了模型的正确性.  相似文献   

20.
Advanced Vehicle Control Systems (AVCS), when realized, should substantially increase the convenience and safety of highway travel. Automated lateral control is an important step in the realization of AVCS. Much research has been concerned with lateral control during low-g maneuvers. However, before passengers' lives are in the hands of any automated laterally-controlled vehicle, the vehicle controller must be designed to respond to emergency situations where high-g maneuvers may be necessary.

This paper presents the development of a nonlinear-gain-optimized (NGO) controller for emergency automated lateral control of four wheel steered automobiles. Continuous gain equations (GE) are used to account for changes in the vehicle speed. The NGO controller uses a linear vehicle/tire model to define the state model. The response of a nonlinear vehicle/tire model is used to choose the performance index that optimizes the feedback gains for high-g emergency maneuvers at discrete speeds. Continuous gain equations are then derived as least-square approximations to each set of gains.

The performance of the four-wheel-steer continuous gain equations (4WS-GE) controller is compared to that of a two-wheel-steer continuous gain equations (2WS-GE) controller. Significant improvements in vehicle response are realized by using the 4WS-GE controller. The robustness of the controller's performance is examined with respect to changes in tire parameters and changes in vehicle mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号