首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对自动驾驶车辆的横向控制,提出了一种基于跃度信号的预瞄控制。建立车辆二自由度动力学误差模型,采用线性二次调节(LQR)反馈控制和前馈控制构成闭环横向控制模型。以CarSim和Simulink为仿真平台,模拟车辆进入并跟踪稳态圆。通过分析横向位置误差和横摆角误差等指标,表明该预瞄算法在横向控制精度、跟踪速度方面具有良好效果。  相似文献   

2.
提出了一种融合预瞄特性的智能电动汽车稳定性前馈+反馈控制方法。建立车辆预瞄模型,通过汽车在环境感知时的前视行为,引入道路曲率作为车辆动力学特性的影响因素。基于在前视信息指导下的车辆位姿变化,根据道路附着能力和车速指数模型描述期望纵向车速,建立轮胎侧偏刚度补偿的稳定性前馈控制方法。同时,采用模型预测控制(MPC)设计稳定性反馈控制律,根据车辆的预瞄信息自适应调整预测模型参数和预测时间,消除前馈控制误差及路面扰动等不确定性因素带来的影响。研究结果表明,本文提出的控制策略下汽车质心侧偏角、横摆角速度和侧向加速度小,且跟踪精度更高。仿真试验中,相比于无控制、MPC反馈控制与前馈+定参数MPC反馈控制,本文提出的控制策略在双移线工况1下质心侧偏角峰值分别减小了41.3%、28.9%和10.0%,横摆角速度峰值分别减小了18.0%、6.7%和2.0%,双移线工况2下质心侧偏角峰值分别减小了27.2%、8.7%和8.0%,横摆角速度峰值分别减小了16.9%、12.9%和8.6%;相比于MPC反馈控制与前馈+定参数MPC反馈控制,在蛇行工况1下,质心侧偏角峰值分别减小了49.8%与34.8%,横摆角速...  相似文献   

3.
为了在不同工况中,同时兼顾轨迹跟踪算法的跟踪精度,计算速度与车辆稳定性,提出基于不同车速和路面附着系数的参数自适应MPC算法。在线性时变MPC的基础上增加车辆稳定性控制,并基于路面附着系数设计2种控制策略:在高附着系数路面,针对不同车速优化预测时域与控制时域;在低附着系数路面,开启车辆稳定性控制并基于改进粒子群算法优化权重参数。2种策略在保证跟踪精度与车辆稳定性的基础上提高计算速度。设计基于前馈神经网络的路面识别算法从而为多参数自适应轨迹跟踪算法识别所在道路的路面附着系数,利用CarSim-Simulink平台进行联合仿真。研究结果表明:路面识别算法的平均绝对百分比误差为12.77%,足够满足多参数自适应轨迹跟踪算法的需求;相较于传统线性时变MPC跟踪算法,低速工况下参数自适应轨迹跟踪算法在高附着系数和低附着系数的路面上,横向平均绝对误差分别降低了20.7%和24.6%;高速工况下横向平均绝对误差分别降低了66.2%和50.7%;综合所有试验,算法的计算时间减少了40.2%;在保障车辆稳定性的同时降低算法的计算时间。研究成果针对不同车速与附着系数对轨迹跟踪算法参数进行优化,利用自适应预...  相似文献   

4.
徐兴  汤赵  王峰  陈龙 《中国公路学报》2019,32(12):36-45
为了提高分布式无人车轨迹跟踪的精度,提出了基于自主与差动协调转向控制的轨迹跟踪方法。首先,在车辆三自由度模型基础上,基于模型预测控制(MPC)实时计算前轮转角以控制车辆进行自主转向轨迹跟踪。在此过程中,为了提高自主转向下车辆的轨迹跟踪精度与行驶的稳定性,考虑多种因素,利用经验公式及神经网络控制对MPC的预瞄步数和预瞄步长进行多参数调整,实现预瞄时间的自适应控制。其次,在恒转矩需求的情况下,以轨迹偏差为PID控制器的输入及左右轮毂电机转矩为输出进行差动转向控制,实现了差动转向下的轨迹跟踪控制。然后,通过设置权重系数的方法将自主与差动转向相结合。考虑到车辆横纵向动力学因素,采用模糊控制及经验公式对权重系数进行了调整,从而在提高车辆转向灵活性与轨迹跟踪效果的同时保证车辆行驶的稳定性。CarSim与Simulink联合仿真以及实车试验结果表明:与自主转向轨迹跟踪相比,采用变权重系数的协调控制可以在不同的工况下提高车辆的转向灵活性与轨迹跟踪的精度,轨迹跟踪偏差的均方根值改善率达到了11%。所提出的协调转向控制方法可为分布式驱动车辆转向灵活性的提高及轨迹跟踪精度的改善提供一种新的思路。  相似文献   

5.
针对智能车辆路径跟踪控制的高度非线性及纵横向运动控制的耦合性问题,结合视觉预瞄模型及模型预测控制理论提出了一种预瞄式MPC路径跟踪控制新方法。该方法首先对非线性预测模型进行局部线性化,将MPC最优化求解问题转化为二次规划问题。在每个控制时域内将纵向车速及预瞄距离视为已知,运用指数模型对纵向车速进行描述,并结合道路曲率及实际车速设计了预瞄距离发生器。仿真和试验结果表明:相较于传统MPC跟踪控制方法,本文中提出的预瞄式MPC控制方法在不同车速下均能减小跟踪过程中的横向偏差和方向偏差,提高了跟踪精度,且此提升效果在高速状态下更为明显。  相似文献   

6.
针对模型预测控制(MPC)路径跟踪控制器在不同路面附着系数及车速下跟踪误差大的问题,提出了基于粒子群寻优(PSO)-反向传播(BP)神经网络优化MPC的无人驾驶汽车路径跟踪控制策略。首先,设计了MPC路径跟踪控制器;其次,利用PSO-BP对MPC进行优化,以控制器精度和车辆稳定性作为评价函数,获得PSO离线最优时域参数;最后,选择4种工况进行双移线跟踪对比仿真验证。结果表明:所提出的控制策略在保证行驶稳定性的条件下,低路面附着系数低速、高路面附着系数低速、高路面附着系数高速及中路面附着系数中速工况下双移线跟踪横向控制精度分别提高了50%、55%、9%和20%。  相似文献   

7.
基于多点序列预瞄的自动驾驶汽车路径跟踪算法研究   总被引:1,自引:0,他引:1  
针对自动驾驶汽车自主行驶问题,提出了一种基于预瞄信息的路径跟踪算法。以GPS轨迹点序列作为目标路径,建立车辆—路径相对运动关系模型,使用实时差分GPS数据确定车辆位置。通过预瞄点序列,计算路径的预瞄偏差角和路径弯曲度。根据路径弯曲度确定行驶速度,实现纵向控制;通过Pure Pursuit算法将预瞄偏差角转换成前轮转角的控制量,实现横向控制。试验结果表明,提出的路径跟踪方法在纵向、横向控制和跟踪平稳性方面都具有良好的效果。  相似文献   

8.
针对斯坦利(Stanley)跟踪算法无法更好地同时满足无人驾驶路径跟踪的精确度和平滑性要求的问题,根据车辆的航向角、横向偏差、车速等特性,基于合适的预瞄距离,采用纯跟踪(Pure Pursuit)算法对Stanley算法中车轮转角的计算方式进行改进,提出一种新的融合算法,实时计算车辆在当前车速下合适的车轮转角。仿真结果表明,相比于Stanley算法,所提出的融合算法在不失跟踪精确度的情况下,不同车速下跟踪平滑性均有较大提升。实车试验结果表明,在20 km/h车速下,所提出融合算法的跟踪路径比原Stanley算法的跟踪路径有更好的精确度和平滑性。  相似文献   

9.
查云飞  吕小龙  陈慧勤  易迎春  王燕燕 《汽车工程》2023,(6):1010-1021+1039
针对车辆在高速转向和不同路面附着系数下的轨迹跟踪控制问题,基于模型预测控制理论提出了一种考虑路面附着系数的变侧偏角约束MPC控制策略。根据魔术公式轮胎模型分析轮胎的侧偏特性以及不同附着系数对轮胎侧偏角-侧向力线性区的影响,建立轮胎侧偏角约束与不同路面附着系数的函数关系;采用遗传算法(GA)优化BP神经网络模型设计路面附着系数估计器,将估计结果作为与轮胎侧偏角约束相关的变量传递到MPC控制器中;最后在MPC控制器中建立系统控制量约束、控制增量约束,以及考虑路面附着系数的变侧偏角约束,将不同路面附着系数工况下的轨迹跟踪问题转化为多约束条件下最优值求解问题,实现轨迹跟踪和车辆稳定性控制。仿真和试验结果表明,考虑路面附着系数变化的MPC控制方法相对传统MPC控制方法在各种工况下具有更高的轨迹跟踪精度和更好的车辆稳定性,GA-BP神经网络路面系数估计方法具有很高的估计精度。  相似文献   

10.
针对无人驾驶车辆在极限工况下跟踪控制精度和稳定性均难以保障的问题,提出一种纵横向稳定性综合协调控制方法。首先对无人驾驶车辆在摩擦极限下的速度进行规划,通过纵向加速度前馈和状态反馈控制器实现极限车速下的速度跟随。其次将预瞄前馈与人工势场反馈相结合设计了横向路径跟踪控制器。提出了基于期望与实际横摆角速度偏差的稳定性控制策略,优化纵向控制的驱动力矩。Simulink/Carsim联合仿真结果表明,所提出的纵横向协调稳定控制方法可在极限工况下改善无人驾驶车辆瞬态响应,抑制道路曲率突变处的超调量,减少路径跟随中的稳态误差,提高了无人驾驶车辆的轨迹跟踪精度和弯道运动过程中的横向稳定性。  相似文献   

11.
宋强  王冠峰  商赫  张念忠 《汽车工程》2023,(11):2104-2112+2138
为改善高速低附着路面上的车辆动力学性能,本文针对分布式驱动电动汽车提出一种基于多参数控制的操纵稳定性控制策略,包括上层轨迹跟踪控制和下层转矩分配控制。上层控制器设计基于2自由度车辆模型和驾驶员预瞄偏差模型,提出了MPC轨迹跟踪控制策略,实现对侧向偏差、横摆角偏差、质心侧偏角、横摆角速度的多参数控制。下层控制器以轮胎负荷率最小为优化目标,获得4个车轮电机转矩的最优分配量,借助于7自由度动力学模型,在双移线、蛇行工况下完成了CarSim-Simulink联合仿真。结果表明:提出的控制策略改善了高速、低附着工况下的操纵稳定性和轨迹跟踪精度。  相似文献   

12.
为保证无人车在参数不确定性影响下的路径跟踪具有预设控制精度,提出一种具有预设跟踪误差性能的路径跟踪输出反馈控制方法。根据横向预瞄偏差建立了路径跟踪二阶误差积分系统,在考虑轮胎侧偏刚度参数摄动及车辆横向速度未知的情况下,利用扩张状态方法建立了含有复合未知项的控制模型,再通过设计线性扩张状态观测器对系统未知状态和模型不确定项进行估计,并进一步证明了观测误差的一致有界收敛性。针对无人车路径跟踪瞬态和稳态性能无法满足预设精度的问题,结合观测器估计值提出了一种具有预设性能的路径跟踪输出反馈控制器,并根据Lyapunov理论对闭环系统稳定性进行了严格证明。Matlab/Simulink仿真结果表明,所设计的控制策略能保证车辆以预设控制性能跟踪上期望路径,进一步在硬件在环仿真试验台上进行验证,结果表明所设计方案能严格保证横向跟踪偏差位于安全边界之内并具有较强的鲁棒性。  相似文献   

13.
车辆转弯制动横向轨迹控制驾驶员模型研究   总被引:1,自引:1,他引:0  
为了较为真实地反映车辆转弯制动工况,建立了含Pacejka"魔术公式"非线性联合工况轮胎模型的4轮8自由度车辆系统模型,并基于预瞄跟随理论、加速度反馈控制和模糊PID控制技术建立了车辆转弯制动横向轨迹控制驾驶员模型。针对不同初始速度和制动强度,利用MATLAB/Simulink进行了横向轨迹控制仿真分析。分析结果表明,驾驶员控制模型能很好地跟踪横向轨迹,模型的可行性和有效性得到验证,同时不同仿真条件下结果的一致性也说明该控制方法具有较强的自适应能力和鲁棒性,为进一步研究复杂工况下的驾驶员模型及横向轨迹控制提供了一条可行的途径。  相似文献   

14.
针对智能车辆在轨迹跟踪过程中的横向控制问题,提出一种基于强化学习中深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)的智能车辆轨迹跟踪控制方法。首先,将智能车辆的跟踪控制描述为一个基于马尔可夫决策过程(MDP)的强化学习过程,强化学习的主体是由Actor神经网络和Critic神经网络构成的Actor-Critic框架;强化学习的环境包括车辆模型、跟踪模型、道路模型和回报函数。其次,所提出方法的学习主体以DDPG方法更新,其中采用回忆缓冲区解决样本相关性的问题,复制结构相同的神经网络解决更新发散问题。最后,将所提出的方法在不同场景中进行训练验证,并与深度Q学习方法(Deep Q-Learning,DQN)和模型预测控制(Model Predictive Control,MPC)方法进行比较。研究结果表明:基于DDPG的强化学习方法所用学习时间短,轨迹跟踪控制过程中横向偏差和角偏差小,且能满足不同车速下的跟踪要求;采用DDPG和DQN强化学习方法在不同场景下均能达到训练片段的最大累计回报;在2种仿真场景中,基于DDPG的学习总时长分别为DQN的9.53%和44.19%,单个片段的学习时长仅为DQN的20.28%和22.09%;以DDPG、DQN和MPC控制方法进行控制时,在场景1中,基于DDPG方法的最大横向偏差分别为DQN和MPC的87.5%和50%,仿真时间分别为DQN和MPC的12.88%和53.45%;在场景2中,基于DDPG方法的最大横向偏差分别为DQN和MPC的75%和21.34%,仿真时间分别为DQN和MPC的20.64%和58.60%。  相似文献   

15.
为提高基于预瞄理论的路径跟踪控制算法的计算效率与适应性,本文中在预瞄最优曲率模型的基础上,提出了一种依据车辆实际行驶路程获取预瞄点侧向位移的弧长预瞄方法。并在该方法下,推导了预瞄点侧向位移与车辆前轮转角之间的关系,之后通过侧向跟踪闭环系统方框图,建立了路径跟踪的侧向控制模型。最后,在CarSim/Simulink联合仿真环境下,通过建立若干典型仿真工况,对该模型的有效性和人-车-路闭环系统转向盘稳定性影响因素进行了仿真分析。结果表明,该方法在侧向路径跟踪控制方面具有跟踪精度高、计算速度快和适应性好的特点。并且,当闭环系统同时满足期望路径点方向连续和预瞄距离大于临界前视距两个条件时转向盘趋于稳定。  相似文献   

16.
路径跟随是依照规划轨迹信息通过对执行元件的控制实现沿期望轨迹行驶,控制算法对实现路径跟随非常重要。针对自动驾驶车辆的侧向控制技术,文章研究了基于最优预瞄理论的路径跟随控制,建立车辆二自由度模型和预瞄误差模型,设计模型预测控制(MPC)侧向跟随控制器以提高跟随精度。利用CarSim-Simulink联合仿真,仿真结果表明,该算法策略能稳定跟踪规划路径。  相似文献   

17.
针对复杂工况横向控制精度低、稳定性差的问题,提出了一种基于可拓优度评价的智能汽车横向轨迹跟踪控制方法,创新采用可拓优度评价控制方法,设计了两层结构的横向轨迹跟踪控制系统。上层控制器包括基于预瞄偏差的PID反馈控制和基于道路曲率的PID前馈-反馈控制;下层控制器利用可拓优度评价方法来评价上层两控制器的优劣,根据实时的车辆-道路系统状态,选择优度高的控制器输出值,从而实现智能汽车横向轨迹跟踪控制功能,不论是小偏差、小曲率工况,还是大偏差、大曲率工况,都能达到良好的控制效果,提升了智能汽车横向控制系统的工况适应性和可靠性。仿真结果表明,与单一PID反馈控制相比,采用优度评价控制时,横向位置偏差和航向偏差分别减小了16.67%和12%。  相似文献   

18.
为提高智能车辆的半主动悬架综合控制性能,提出一种基于状态反馈和预瞄前馈的半主动悬架控制方法。首先,以8轮车为研究对象建立11自由度半主动悬架模型,设计LQR状态反馈控制器。然后,为解决状态反馈控制抗路面干扰能力弱和基于固定时序延迟的预瞄反馈控制适用性差的问题,提出一种基于状态反馈和预瞄前馈的控制器:建立车轮运动规划模型和路面预瞄模型,计算出悬架控制系统所需的车轮规划轨迹点序号和控制延迟响应时间;以路面激励和垂向加速度为输入、以前馈阻尼力为输出,设计基于类模糊的预瞄前馈控制器,并与LQR反馈控制器一并构成所提控制器。最后,基于MATLAB/Simulink和Trucksim联合仿真平台,进行匀速转向工况、变速直线工况、变速转向工况和匀速直线工况下的试验验证。结果表明,在垂向加速度、俯仰角加速度、侧倾角加速度均方根值方面,与被动悬架相比,所提控制方法在4种工况下至少降低了23.52%、13.59%、19.35%;与基于固定时序延迟的预瞄反馈控制相比,所提控制方法在前3种工况下至少降低了14.04%、8.09%、13.79%;与基于状态反馈的控制方法相比,所提控制方法在第4种工况下降低了13...  相似文献   

19.
矿用无人运输车辆作业环境恶劣,存在大曲率弯道、坡道等非结构化道路明显特征,对无人化运输控制要求高。为改善PID等传统控制算法适应性问题,提高无人驾驶轨迹跟踪的车辆横纵向控制精度,提出一种纯跟踪与PID结合的多点预瞄横向控制、考虑模糊控制表参数拟合的纵向控制方法,减少控制参数的同时提高算法效果。根据传统控制算法设计基础控制器,结合基础算法优势进行横向与纵向控制算法设计,通过硬件在环仿真和实车测试验证算法的性能。试验结果表明,横向控制算法与斯坦利算法相比,车辆路径跟踪精度有明显改善,纵向控制方面,速度跟随误差<1 km/h,保证了车辆驾驶时的平稳性与舒适性。  相似文献   

20.
为了解决智能车辆在工况变化时跟踪精度下降和稳定性变差的问题,提出基于强化学习的变参数模型预测控制(MPC)算法多目标控制策略,实现智能车辆路径跟踪控制系统的参数自适应整定。基于车辆动力学模型设计其线性时变MPC控制器,获得最优前轮转向角和附加横摆力矩。基于Actor-Critic强化学习架构,设计进行控制参数整定的深度确定性策略梯度(DDPG)智能体和双延迟深度确定性策略梯度(TD3)智能体,构造以跟踪精度和稳定性为目标的收益函数,并搭建对接工况和变曲率工况2种典型仿真场景进行算法性能验证,当车辆处于对接工况时,根据路面附着系数的变化及时调整控制器的预测时域和权重矩阵;当车辆处于变曲率工况下时,针对道路曲率变化及时调整控制器的预测时域和权重矩阵。通过MATLAB/SimuLink、CarSim和Python联合仿真分析,将强化学习方法参数整定MPC与固定参数MPC和模糊控制方法参数整定MPC进行对比,结果表明:强化学习方法更能够在保证车辆安全性的前提下,尽可能提高智能车辆在不同路面条件下的路径跟踪精度。在对接工况下,强化学习方法参数整定MPC相较于固定参数MPC和模糊控制方法参数整定M...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号