首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了改进标准方柱(直边尖角柱)的气动性能,以经过角(尖角、圆角)、边(直边、凹边和凸边)形状修正的类方柱为研究对象,采用非定常数值模拟方法,在低雷诺数下研究了6类二维柱体在不同风向角下的气动性能和流场特性。研究结果表明:对标准方柱的角、边形状的修正可明显改变其绕流场结构,会改善或劣化其气动性能;与直边柱体相比,凸边柱体的气动力系数和风压系数明显减小,而凹边柱体的气动力系数和风压系数均有增大的趋势;与尖角柱体相比,圆角化后柱体的气动力系数在所有风向角下呈整体下降趋势,Strouhal数增大;从总体上看,在研究的6类柱体中,凸边圆角柱的气动性能最好,凹边尖角柱的气动性能最差。  相似文献   

2.
为验证大涡模拟在风工程研究上的适用性,数值模拟了固定三维直圆柱在雷诺数(Re数)为4.11104下的绕流场,获得了圆柱非定常气动力,得到了与文献结果接近的升力脉动RMS值和漩涡脱落斯特劳哈尔数(Sr数);提出了基于90和270点脉动压力时程的互相关系数和RMS值,估算圆柱截面脉动升力RMS值的经验公式;开展了圆柱表面脉动压力时程的相干性分析和气动力产生的流动机理研究.研究揭示了圆柱涡脱的空间不同步和频率随时间的变化特征,以及涡脱能量的有限频率带宽分布;表明圆柱表面的脉动压力能量均集中在漩涡脱落频率上,且圆柱表面90和270点脉动压力时程具有完全相同的统计特性.   相似文献   

3.
为了保证高速列车在大风环境下路堑中行驶的安全,建立了高速列车—路堑耦合的气动仿真模型,研究了不同风场环境下路堑深度对列车气动性能的影响.研究表明:高速列车的气动特性随着风载荷的突变,气动特性的变化情况复杂.横风环境下,路堑深度的增加有利于降低列车气动力,而在突变风环境下,突变风作用下列车的气动力随风速变化情况更为复杂....  相似文献   

4.
静风效应产生的附加风攻角对大跨度桥梁的颤振性能有着重要的影响,因此研究不同风攻角下主梁的颤振机理有重要意义.以扁平箱梁为研究对象,基于不同攻角下的颤振导数,采用双模态耦合解法掌握了颤振性能,继而通过分析气动阻尼、相位差和气动力幅值的变化研究了颤振机理.研究结果表明:在0°和3°攻角下,非耦合气动力为扁平箱梁断面提供了较大的正阻尼,颤振临界风速较高;在5°攻角下,非耦合气动力产生的正阻尼显著减小,使得耦合气动力产生的负阻尼迅速增加,导致颤振临界风速显著降低;耦合运动相位角增大是大攻角下气动负阻尼增加的主要原因,耦合气动力振幅则对颤振风速没有影响;此颤振机理表明大攻角下扁平箱梁颤振性能的弱化是由耦合效应增大引起,而非扭转运动产生的气动负阻尼引起.   相似文献   

5.
为研究高雷诺数为22 000下方柱周围流场形态及气动力特性,基于开源计算流体动力学(computational fluid dynamic,CFD)软件OpenFoam平台,采用基于动态亚格子模型的大涡模拟(large eddy simulation,LES)方法,对均匀来流作用下的方柱绕流进行了三维数值模拟.首先,通过对基于时间积分的平均积分分量的比较,验证了本数值计算的准确性;其次,深入分析了方柱周围及其尾流区的流场结构,给出了流场结构的平均和湍流特征,并在此基础上,研究了其气动力特性;最后,分析了两种长径比下表面压力的展向空间相关性.研究结果表明:雷诺数为22 000下方柱尾流区回转长度为1.37倍方柱宽度,Strouhal数为0.121,脉动升力系数为1.40;展向长度取8倍方柱宽度可更准确地获得周围湍流特性.   相似文献   

6.
车辆经过桥塔区域时,由于桥塔的遮风效应,其气动荷载会产生突变,且公铁平层桥梁的桥塔由于纵向尺度较大,车辆经过桥塔区域时气动荷载的变化更加剧烈.为明确某公铁平层桥梁上车辆在桥塔区域的气动特性,制作了1/20大比例尺的风洞试验模型;基于优化后的测试系统,测试了车辆通过公铁平层宽幅桥梁桥塔时的气动荷载,研究了车道位置、车辆类型以及桥塔外形对通过桥塔车辆的气动特性的影响.结果表明:越靠近桥塔车道上的车辆,经过桥塔时的横向力系数、摇头力矩系数的突变量更大,正向升力也越大,因而更容易发生侧滑与侧偏;车长对车辆通过桥塔区域的性能有显著影响,长度较小的车辆具有更大的横向力系数突变量,长度较长的车辆具有更大的倾覆力矩系数、摇头力矩系数及点头力矩系数突变量;与矩形截面桥塔相比,带倒角的桥塔使得厢式货车的横向力突变量减小了43.7%,使集装箱车的横向力系数突变量减小了25.8%,且使集装箱车的摇头力矩系数突变量减小了29.2%.  相似文献   

7.
顺向斜风对行车安全的影响不容忽略,为考查顺向斜风对运动车辆气动特性的影响,采用移动车辆模型风洞试验装置,针对缩尺比为1/20的车辆和桥梁模型,测试了顺向斜风作用下运动车辆的气动特性,讨论了风速、风向和风屏障等因素对移动车辆气动特性的影响. 结果表明:移动车辆的五分力系数在不同风速时吻合较好;侧向阻力系数、升力系数和点头力矩系数随着合成风偏角的增大而减小;风偏角较小时,风向角对车辆的升力系数有较明显的影响;风屏障使车辆的气动力系数接近0,且明显地改变了车辆气动力系数随风偏角的变化规律;设置风屏障后,车辆阻力系数的变化率受风偏角、车速和风速等条件的影响.   相似文献   

8.
通过有限深度均匀流水槽试验研究了不同的圆柱桩群与方柱桩群对均匀水流绕流后方流态区段影响程度及范围,对多组试验研究数据对比分析研究揭示:桩群绕流对均匀水流的影响规律、性质与程度;桩群后方流场流态影响区段范围的影响规律.发现同排列形式的方柱桩群对水流绕流的影响甚于圆柱桩群;垂直于水流方向排列桩柱密度对桩群绕流的影响甚于顺水流方向桩柱排列的密度;雷诺数对桩群绕流影响很大;水利工程实际中采用小尺寸桩柱优于大尺寸桩柱.  相似文献   

9.
文章对虎门二桥主梁的3个不同方案进行了风洞试验,提出了仅由静风状态下测出的升力系数可作为初步判定悬索桥主梁选择优劣的标准,通过成桥状态阶段模型测振实验测出颤振临界风速,并比较了3个方案颤振临界风速大小,探明了升力系数能综合反映桥梁气动性能这一理论的正确性。  相似文献   

10.
串列双圆柱尾迹流的数值分析   总被引:1,自引:0,他引:1  
为避免流体流动引起共振,采用有限体积法,对串列双圆柱尾迹流进行了数值分析,探讨了斯特劳哈尔数(Strouhal数)随圆柱间距比和雷诺数变化的规律.研究表明:在不同流场形态下,斯特劳哈尔数随圆柱间距比的变化规律不同;斯特劳哈尔数随雷诺数的增大而增大,但增大幅度与流场形态有关.  相似文献   

11.
本文主要分析上海浦东新电视塔上的风荷载分布情况。其风洞试验在中国气动力研究与发展中心低速所8m×6m大型低速风洞中进行,获得了电视塔模型上的整体气动荷载和压力分布。重点探讨了柱群与球体的气动力干扰,邻近建筑物对电视塔的干扰,迎风角变化的影响以及Re数的模拟等问题。由试验可见,列时,柱间易发生“稳态偏流”,使处于尾流区的第三柱上的压力分布发生很大变化,并容易受激振动。当存在多柱干扰时,圆柱阻力将会增  相似文献   

12.
运用计算流体力学软件FLUENT,引入雷诺应力模型求解不可压粘性流体Navier-Stokes方程,对正方形及其不同切角截面进行仿真计算.研究了正方形,切角正方形,圆角正方形三种截面的阻力,升力,俯仰力矩,Strouhal数及尾流的流动状态.仿真计算结果表明几何形状的微小变化会引起气动力系数发生很大的变化,尤其是在物体形状的变化强烈的影响到压力分布的时候,其中圆角正方形截面的气动性能最好.仿真计算结果与风洞实验结果吻合良好.  相似文献   

13.
考虑双向流固耦合并利用软件ANSYS CFX模拟了圆柱表面涡脱的产生和变化过程,结合工程实际给出了计算实例,采用有限体积法对流体力学控制方程Navier-Stokes进行离散,用SIMPLE方法求解,分析计算了圆柱表面周向压力系数分布情况及圆柱的阻力系数、升力系数及Strouhal数,得到了流体与结构物相互作用对圆柱绕流特性的影响。结果表明:由于圆柱受到水流的作用,圆柱的升力及尾流特征显示周期性变化,并出现单一频率振动。  相似文献   

14.
以悬吊双层闭口箱梁桥面为研究对象,通过风洞试验,针对结构静力耦合与气动干扰对悬吊双层闭口箱梁桥面风振性能影响进行了研究;采用变分模态分解方法对试验监测信号进行模态分解,识别颤振模态;通过振动形态矢量图与相位图对颤振弯扭耦合程度及弯扭相位差进行分析;根据最小二乘法识别颤振导数,基于激励-反馈原理,由颤振导数识别颤振气动阻尼。研究结果表明:在结构静力耦合与气动干扰共同作用下,下层断面发生软颤振,其竖向、扭转振动参与度系数分别为0.85、0.53,其颤振形态倾向于竖向振动;下层断面在自激气动力作用下发生颤振,自激气动力相位差减小导致颤振弯扭相位差减小为81.29°,而上层断面在结构耦合力作用下发生强迫振动,结构耦合力相位差决定上层断面弯扭相位差为100.81°;下层断面竖向振动气动阻尼主要来源于竖向速度自激升力负阻尼以及弯扭速度通过激励反馈所产生的耦合升力负阻尼,分别为60%和40%;下层断面转振动气动阻尼主要来源于扭转速度自激升力矩正阻尼以及弯扭速度通过激励反馈所产生的耦合升力矩正阻尼,分别为45%和50%。可见,对于悬吊双层闭口箱梁桥面,下层断面在竖向振动气动负阻尼驱动下发生偏于竖向振动形态软颤振,下层断面软颤振诱发悬吊双层桥面振动系统整体发生弯扭耦合软颤振。   相似文献   

15.
采用有限体积法,利用RNG k-ε模型对雷诺数Re=22 000情况下二维串列双方柱绕流进行湍流数值模拟。着重研究了不同的方柱间距比时上下游方柱所受到的阻力、升力与涡街特性,以及各方柱后尾流的变化情况。计算结果表明:上游方柱受力明显大于下游方柱,但两方柱脉动频率几乎相等,而升力有较大差别;下游方柱所受阻力沿水流方向随着间距的增加而增大;受上游方柱尾流作用,下游方柱升力增加,脉动较单柱情形时明显变大;分析了不同间距下流场的演变情况。  相似文献   

16.
通过数值方法研究了中国帽型瞬态风中高速列车在带风屏障的高架桥上运行时的气动性能,并与恒定横风场下的情况进行了对比分析.结果表明,恒定侧风下高速列车头车周围的流场结构最为复杂,气动载荷变化最显著,而瞬态风作用下高速列车气动性能表现出一定时滞性,列车时速为300 km/h时,风速从13.8 m/s递增到23.46 m/s再递减至13.8 m/s过程中,列车所受到的气动力及气动力矩均发生显著波动,这与稳定横风下列车受到的恒定侧向力明显不同.当列车以时速200~400 km/h运行时,车速每增加50 km/h,列车运行的最大阻力增长9%~10%,其他气动力也随车速稳步增长,气动力矩的增大幅度则随车速的增长有显著加大趋势.  相似文献   

17.
为了探讨尾部隔板对圆柱绕流场的影响,采用有限体积法、非结构化网格和层流模型求解二维不可压缩N-S方程.在雷诺数为200的条件下,对背流面沿流动方向的对称线上,带薄板的圆柱绕流场进行了数值模拟,得到了流场速度云图、斯特劳哈尔数及平均阻力系数随隔板长度的变化情况.研究结果表明:在圆柱尾部加入的隔板能有效改善旋涡的脱落情况,削弱尾迹区的能量耗散,同时降低绕流的斯特劳哈尔数.在板长与圆柱直径比为L/D≥7的情况下,加入的隔板使圆柱尾部的旋涡被拉伸为扁平结构并限定在隔板两侧,在扁平对涡的外侧形成类似流线型的流场结构;尾部的隔板也使绕流的阻力系数呈现下降的趋势,当L/D=7时,平均阻力系数下降了约40%.   相似文献   

18.
磁悬浮列车高速运行时受到较大气动升力作用,尤其是尾车向上的气动升力较大,易使悬浮性能恶化,甚至导致悬浮控制系统失效,影响列车的乘坐舒适性及运行安全性,因此亟待开展高速磁悬浮列车的尾车升力特性研究及改善工作. 对开展过风洞试验的高速磁悬浮列车进行数值模拟计算,得到的列车表面压力系数与风洞实验数据吻合较好,并加装气动翼改善高速磁悬浮尾车气动升力,研究了气动翼角度、数量对尾车气动性能的影响. 研究结果表明:仅安装一个气动翼时,其自身的气动升力随角度的增加而减小,但尾车气动升力则呈现先减小后增大的规律,气动翼角度为12.5° 时尾车升力最小,与原始磁悬浮列车相比气动升力系数减小3.9%,气动翼及尾车气动阻力略有增加;以气动翼与车体切线角度保持不变为基准在尾车安装多个12.5° 气动翼,不同位置气动翼的气动阻力基本相同,气动翼数量增加后尾车气动阻力随之增大;不同位置气动翼的气动升力存在差异,向鼻尖方向气动翼的气动升力递减,尾车气动升力随气动翼数量增加先减小后趋于稳定;各方案中安装2个气动翼的磁悬浮列车气动性能相对更优,与原始磁悬浮列车相比尾车气动升力减小4.6%,整车阻力仅增加1.4%.   相似文献   

19.
桥塔遮风效应对风-车-桥耦合振动的影响   总被引:3,自引:2,他引:1  
为考察横向风作用下桥塔附近风场突变对行车安全性和舒适性的影响,采用计算流体动力学(CFD)数值模拟方法对大跨度悬索桥桥塔区域桥面风场进行了仿真分析.通过组合节段模型风洞试验,测试了车辆沿不同位置的轨道运行时车辆、桥梁的气动力系数.基于不同位置轨道处的风场分布和测试的气动力系数,采用自主研发的桥梁结构分析软件BANSYS,对车辆沿不同位置轨道通过桥塔区域时的动力响应进行了对比分析.研究结果表明,桥塔附近桥面风场变化剧烈,存在局部加速效应;桥塔处风场突变效应对车辆横向响应的影响明显.  相似文献   

20.
П型断面主梁为气动钝体结构,在非线性自激力作用下,极易发生软颤振现象.以某П型断面叠合梁斜拉桥为研究对象,通过节段模型风洞试验,研究了各种气动措施对П型断面主梁软颤振性能的影响.研究结果表明:П型断面主梁软颤振表现为弯扭自由度耦合的单频振动特征,且随着风速的增加,竖向振动参与度系数先减小后增大;安装风嘴可以增大系数,其振幅服从正态分布,振幅波动范围随风速及攻角变化而变化;风攻角为负时,П型断面主梁最易发生软颤振;设置桥面附属设施会提高软颤振的临界风速、减小软颤振的扭转振幅及振幅增长速率;设置风嘴会显著降低软颤振的振动响应,采用尖风嘴可以改善主梁的软颤振性能,且随着风嘴变尖,软颤振的临界风速有提高的趋势,软颤振扭转振幅有下降的趋势;П型断面主梁底部设置中央稳定板对其软颤振性能的影响不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号