首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
大跨度双层桁架梁悬索桥颤振性能试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为提高大跨度双层桁架梁悬索桥的颤振性能,以主跨为1 700 m的杨泗港长江大桥为工程背景,通过节段模型风洞试验,分别研究了上中央稳定板、下稳定板、水平翼板以及组合措施对主梁颤振性能的影响,并通过将有效气动措施与主梁原有构件相结合的方法来减小传统气动措施带来的不利影响,针对最优气动方案,研究了阻尼比对主梁颤振性能的影响. 研究结果表明:原主梁断面在0° 和 +3° 攻角下发生了没有明显发散点的单自由度扭转软颤振,颤振临界风速分别为50.5 m/s和31.2 m/s;安装于上层桥面的上中央稳定板、下层桥面的下稳定板以及与人行道底部齐平的水平翼板均能不同程度地提高主梁的颤振稳定性;当把水平翼板与下层桥面的下稳定板组合后,主梁的颤振临界风速增长率可高达34%,在此基础上提出了将上层托架和人行道板加宽、并将下稳定板和检修车轨道相结合的最优气动方案;当扭转阻尼比由0.37%增加至0.52%时,主梁的颤振临界风速可提高11.9%,说明阻尼器可能对发生单自由度扭转软颤振的桥梁起到良好的抑振效果.   相似文献   

2.
静风效应产生的附加风攻角对大跨度桥梁的颤振性能有着重要的影响,因此研究不同风攻角下主梁的颤振机理有重要意义.以扁平箱梁为研究对象,基于不同攻角下的颤振导数,采用双模态耦合解法掌握了颤振性能,继而通过分析气动阻尼、相位差和气动力幅值的变化研究了颤振机理.研究结果表明:在0°和3°攻角下,非耦合气动力为扁平箱梁断面提供了较大的正阻尼,颤振临界风速较高;在5°攻角下,非耦合气动力产生的正阻尼显著减小,使得耦合气动力产生的负阻尼迅速增加,导致颤振临界风速显著降低;耦合运动相位角增大是大攻角下气动负阻尼增加的主要原因,耦合气动力振幅则对颤振风速没有影响;此颤振机理表明大攻角下扁平箱梁颤振性能的弱化是由耦合效应增大引起,而非扭转运动产生的气动负阻尼引起.   相似文献   

3.
悬索桥跨径越大,结构越轻柔,对风致振动越敏感,因此,研究悬索桥主梁抗风性能尤为重要。对某主跨1196m大跨度悬索桥,采用有限元建模计算分析了成桥状态的结构动力特性;通过静力节段模型试验,测试了成桥状态主梁的三分力系数,结果表明:该扁平加劲梁整体上具有较好的静风稳定性能;通过动力节段模型试验考察了成桥状态桥梁在风攻角为0°、±3°、±5°下的颤振稳定性能,风攻角为+3°和+5°时,颤振临界风速接近或低于颤振检验风速,其余风攻角下颤振稳定性能良好;通过优化人行栏杆构造、增大透风率对主梁断面进行优化,有效改善了主梁断面的气动性能。  相似文献   

4.
以悬吊双层闭口箱梁桥面为研究对象,通过风洞试验,针对结构静力耦合与气动干扰对悬吊双层闭口箱梁桥面风振性能影响进行了研究;采用变分模态分解方法对试验监测信号进行模态分解,识别颤振模态;通过振动形态矢量图与相位图对颤振弯扭耦合程度及弯扭相位差进行分析;根据最小二乘法识别颤振导数,基于激励-反馈原理,由颤振导数识别颤振气动阻尼。研究结果表明:在结构静力耦合与气动干扰共同作用下,下层断面发生软颤振,其竖向、扭转振动参与度系数分别为0.85、0.53,其颤振形态倾向于竖向振动;下层断面在自激气动力作用下发生颤振,自激气动力相位差减小导致颤振弯扭相位差减小为81.29°,而上层断面在结构耦合力作用下发生强迫振动,结构耦合力相位差决定上层断面弯扭相位差为100.81°;下层断面竖向振动气动阻尼主要来源于竖向速度自激升力负阻尼以及弯扭速度通过激励反馈所产生的耦合升力负阻尼,分别为60%和40%;下层断面转振动气动阻尼主要来源于扭转速度自激升力矩正阻尼以及弯扭速度通过激励反馈所产生的耦合升力矩正阻尼,分别为45%和50%。可见,对于悬吊双层闭口箱梁桥面,下层断面在竖向振动气动负阻尼驱动下发生偏于竖向振动形态软颤振,下层断面软颤振诱发悬吊双层桥面振动系统整体发生弯扭耦合软颤振。   相似文献   

5.
为能够快捷且经济地完成开口类钝体桥梁断面涡振制振气动措施的选型,以一座边主梁叠合梁斜拉桥为背景,采用“CFD (computation fluid dynamics)数值模拟选型+风洞试验验证”的思路对其涡振制振气动措施选型进行研究.该桥原设计主梁断面在常遇风速下存在显著涡激振动,为完成气动措施的初步选型,采用CFD数值计算对原设计断面的流场进行模拟,通过研究原设计断面的旋涡脱落状态确定主要旋涡抑制对象,进而有针对性地模拟了3种气动措施(下中央稳定板、导流板与风嘴)对主要脱落旋涡的抑制作用,通过将各断面旋涡脱落状态与三分力系数进行对比分析,得到各断面涡振性能的相对优劣关系,并最终选取风嘴与下中央稳定板结合而成的组合气动措施进行风洞验证试验.试验结果表明:该组合气动措施能够有效抑制梁体在各风攻角下的涡激振动,且在+5°风攻角下,通过风洞试验得到的导流板、下中央稳定板、风嘴组合气动3种措施对原设计断面涡振振幅的减小作用依此递增,分别为2.7%、27.7%与87.4%,制振能力高低关系与数值模拟结果相一致;本次数值模拟结果符合预期要求,未来可针对不同类型桥梁断面进一步扩展数值模拟与风洞试验结...  相似文献   

6.
为研究宽幅分体箱梁桥梁涡激振动特性及其相应振动抑制方法,以某主梁总宽度为64.1 m的分体箱梁大跨悬索桥为工程背景,在均匀流场下对1∶70缩尺比节段模型进行了风洞试验. 首先研究了主梁成桥态在0°、± 3°和± 5°五种不同来流攻角下的涡激振动特性;其次,考察了单一气动措施(包括设置水平气动翼板、封闭中央开槽、隔涡网以及检修车轨道导流板),以及各种组合措施对主梁涡激振动的影响,检验了这些措施对主梁颤振性能的影响. 研究结果表明:宽幅分体式双箱梁在5个风攻角下均发生了竖向自由度涡激共振,其中最不利攻角为–3°,竖向振幅最大值为0.69 m,超过《公路桥梁抗风设计规范》限值的70%;设置隔涡网和采用组合气动措施后,较原始主梁,涡振振幅下降50.7%~98.6%;尽管抑振措施使主梁颤振临界风速降低6%~15%,但仍满足抗风设计要求.   相似文献   

7.
为研究山区峡谷大跨度钢桁梁悬索桥的颤振稳定性及其气动性能优化措施,以某大跨度钢桁架梁悬索桥为工程背景,通过有限元计算分析及主梁节段模型风洞试验,研究其主梁颤振稳定性能.针对大桥颤振临界风速低于颤振检验风速,设计并试验对比了封闭桥面板中央开槽、中央上稳定板和中央下稳定板三种气动优化方案.试验结果表明,采用格栅板封闭桥面板中央开槽并设置中央下稳定板能有效提高大桥的颤振稳定性.  相似文献   

8.
为了能对大跨度桥梁颤振后主梁的运动形式给出合理解释,选取大振幅下流线型箱梁断面的4种典型非线性气动力工况,基于非线性气动力和非线性振动微分方程,应用四阶龙格-库塔算法,分析了大跨度桥梁主梁在大振幅条件下的气动稳定性. 结果表明:大跨度桥梁主梁在颤振后的不同振幅和折算风速条件下可出现不同的运动形式;若气动力仅做负功或负功显著大于正功,主梁振动将收敛;若气动力仅做正功或正功显著大于负功,主梁振动将发散;若气动力做的正负功相当,主梁振动将由于结构阻尼缓慢收敛;若气动力正功与相同周期内结构消耗的能量相等,主梁将发生等幅振动;若不考虑气动力的非线性项,桥梁振动可能发散.   相似文献   

9.
文章对虎门二桥主梁的3个不同方案进行了风洞试验,提出了仅由静风状态下测出的升力系数可作为初步判定悬索桥主梁选择优劣的标准,通过成桥状态阶段模型测振实验测出颤振临界风速,并比较了3个方案颤振临界风速大小,探明了升力系数能综合反映桥梁气动性能这一理论的正确性。  相似文献   

10.
西堠门大桥初步设计钢箱梁断面气动选型   总被引:2,自引:0,他引:2  
用基于计算流体力学(CFD)的数值方法对开槽宽度为5.5,6.0和6.5m的双箱断面进行了气动性能分析,结果槽宽6.0m的双箱断面气动性能最优.通过1:80节段模型试验,对槽宽6.0m的双箱断面、传统单箱断面和双箱格构断面的颤振临界风速进行测定,评价了3种断面气动性能的优劣.结果表明,3种断面——双箱断面、传统单箱断面和双箱格构断面的实测颤振临界风速都大于颤振检验风速,但传统单箱断面需采取气动控制措施.  相似文献   

11.
为了抑制宽幅流线型箱梁涡激振动,以青山长江大桥(大跨度宽幅流线型钢箱梁斜拉桥)为背景,通过1:50节段模型风洞试验,在低阻尼条件下研究了主梁的涡振性能以及不同气动措施包括风嘴、检修车轨道、导流板、抑振板和检修道栏杆对涡振性能的影响.结果表明:采用外形较锐的风嘴可改善主梁的气动性能;通过改变检修车轨道位置、轨道支架高度及在其两侧设置导流板对抑制涡振效果不明显;在防撞栏杆后按隔五封一方式布置抑振板,可以使竖向涡振振幅降低45%;高透风率的圆形截面检修道栏杆可显著改善主梁的涡振性能,使涡振振幅降低63%,并且该措施不会影响桥梁美观性、便于工程应用.通过1:27大比例尺节段模型风洞试验,对高透风率圆形截面检修道栏杆的抑振措施进行了验证,结果表明该措施可有效抑制宽幅流线型箱梁涡振.   相似文献   

12.
为研究流线型箱梁的涡激振动特性及涡振抑振措施,以某大跨度钢箱梁斜拉桥为工程背景,通过1:50节段模型风洞试验研究了主梁断面涡激振动响应;采用计算流体力学(computational fluid dynamic, CFD)分析主梁断面的二维流场. 研究结果表明,检修车轨道处漩涡脱落明显,对主梁断面涡激振动性能影响较大;导流板位置从检修车轨道外侧移动到检修车轨道内侧,主梁断面升力系数均方根值减小了24%;在检修车轨道内侧设置导流板,可以有效抑制主梁涡激振动.   相似文献   

13.
桥梁结构气动外形是影响桥梁结构涡激振动的重要因素。以某大桥流线型箱型断面为研究对象,通过数值模拟计算,研究了斜腹板倾角对流线型箱型断面涡激振动性能的影响,得出结论:流线型箱型结构发生涡振的风攻角以及风速锁定区间不受斜腹板倾角变化影响;最大竖向涡振振幅随斜腹板倾角的增大呈指数型增大。  相似文献   

14.
为了准确把握扁平箱梁的颤振性能,采用节段模型风洞试验和颤振计算相结合的方法,研究了扁平箱梁断面在不同风攻角下颤振临界风速计算值与试验值的一致性.首先通过强迫振动风洞试验获得了某箱梁断面模型颤振导数;然后通过耦合颤振闭合解法获得了不同动力参数条件下的颤振临界风速;最后通过弹簧悬挂节段模型风洞试验测试获得了相同参数条件下的颤振临界风速.计算值和试验值对比结果表明:在0°攻角下扁平箱梁模型颤振临界风速的计算值与试验值保持一致,6种工况下两者差异分别为0.12%、0.50%、4.90%、4.10%、4.84%和1.43%;当风攻角为3°和5°时,颤振临界风速的计算值与试验值较难保持一致,最大差异值可到10.4%;通过对比颤振因子在计算和试验条件下的离散性,在排除非线性气动力和结构阻尼的影响后,推测造成此差异的原因是耦合颤振运动中相位角的变化引起了颤振导数的变化.   相似文献   

15.
桥面输送机改变了边主梁的气动外形,为研究其涡振性能及抑振措施,开展了1.00∶20.00刚性节段模型自由悬挂风洞试验. 首先,研究了带输送机边主梁断面涡振性能,并测试了结构阻尼比对其的影响;其次,对比了有、无输送带边主梁的涡振性能;最后,采用风嘴、梁底稳定板、水平隔流板等气动措施对主梁断面涡振性能进行了优化研究. 结果表明:带输送机边主梁在规范要求的0°、±3° 风攻角下的涡振性能均较差,最大超出规范限值286%;桥面输送机降低了主梁的涡振稳定性,涡振响应峰值提高了44%;梁底安装稳定板有利于改善主梁的涡振性能,并且与梁底同高的稳定板制振效果随其数量的增加而更优,安装3道1.5 m下稳定板对主梁涡振抑制效果达93%;伸出梁底0.5 m的2.0 m高中央稳定板能完全抑制主梁涡振;风嘴对主梁的涡振性能影响较弱,但在一定范围内具有最优角度取值;梁底单独布置水平隔流板,涡振响应峰值降低17%;优化主梁截面采用风嘴 + 风嘴水平分流板 + 1 m宽水平隔流板,主梁涡振响应峰值降低92%,且远低于规范限值.   相似文献   

16.
有理函数系数识别是基于气动力有理函数逼近的桥梁颤振计算的前提条件. 有理函数滞后项的数量对其系数的识别结果影响较大,现有方法中一般仅考虑单滞后项的有理函数系数识别,易造成气动力描述上的失真,进而导致桥梁颤振计算结果不准确. 基于正弦信号的自激气动力在时域上与有理函数对等的原则,采用最小二乘拟合方法,提出了一种可计入多个滞后项的有理函数系数的直接识别算法. 以薄平板模型为对象,利用强迫振动风洞试验获得了自激气动力,采用该算法直接识别了计入不同滞后项的有理函数系数,并分析了滞后项数量对气动力重构精度影响以及对颤振临界风速计算精度的影响.通过自由振动颤振试验获得了实际的颤振风速,进而与采用识别出的有理函数计算的颤振风速进行对比,结果表明:颤振临界风速的试验值与计算值吻合较好,从而验证了本文所提识别算法的准确性;与现有的有理函数系数识别方法相比,本文提出的识别方法兼顾了效率和精度,可广泛用于实际桥梁断面自激气动力有理函数系数的识别中.   相似文献   

17.
大跨度桥梁主梁沿跨向涡激振动响应计算   总被引:2,自引:0,他引:2  
为向抑振提供准确的参考数据,基于单自由度涡激振动经验线性模型,结合主梁振型、阻尼和涡激力相关性,导出了主梁沿跨向竖向、扭转涡激振动响应,建立了大跨度桥梁主梁沿跨向涡激振动描述体系,并探讨了节段模型涡激振动识别气动参数的方法.以一大跨度斜拉桥为例,计算了主梁在不同风攻角下涡激力相关性及沿跨向竖向、扭转涡激振动响应.结果表明,受涡激力相关性作用,涡激振动振幅沿跨向衰减较快.  相似文献   

18.
基于节段模型试验的悬索桥涡振抑振措施   总被引:3,自引:2,他引:1  
为研究大跨度悬索桥涡激振动性能,并提出有效的涡振抑振措施,以某大跨度钢箱梁悬索桥为工程背景,通过1∶20大尺度节段模型风洞试验,在低阻尼下研究了人行道栏杆、检修轨道、导流板对主梁涡激振动性能的影响;通过在检修轨道内侧设置导流板抑制主梁的涡激振动,并基于试验现象探讨了涡激振动发生的机理.研究表明,在检修轨道内侧设置导流板抑制主梁涡激振动的措施使桥梁断面的气动外形更合理,抑振效果好,且结构形式简单,便于工程应用.  相似文献   

19.
颤振破坏是悬索桥一种主要的破坏形式.采用Matlab软件编写了两自由度颤振方程的求解程序,通过求解该颤振方程可以获得悬索桥的颤振频率和颤振临界风速.对3个悬索桥实例进行颤振分析,并与风洞实验结果进行对比,结果吻合较好.通过分析阻尼比对颤振临界风速的影响,结果表明,颤振临界风速会随着阻尼比的增大而逐渐增大,故可通过提高悬索桥的阻尼比来提高悬索桥颤振临界风速.  相似文献   

20.
设置中央开槽的箱梁通常具有良好的颤振稳定性,但该类箱梁在大攻角来流作用下的涡振性能尚不明确. 采用数值模拟方法,针对某大跨度桥梁的流线型箱梁断面,分析了5种不同中央开槽宽度箱梁的流场特性和涡振稳定性能,探究了大攻角下中央开槽宽度变化对箱梁涡振性能的影响规律,并根据静态和动态流场的变化,系统讨论了相应的气动机理. 研究结果表明:在?10°~10° 风攻角范围内,封闭箱梁的阻力系数始终最小,而其升力系数绝对值则普遍大于开槽箱梁;中央开槽宽度(L)对箱梁涡振性能影响显著,箱梁涡振振幅随着开槽宽度的增大而减小,L/B(B为箱梁宽度)由0变化至0.20,涡振振幅变化幅度达到40.9%;开槽宽度的变化会影响箱梁上表面大旋涡的运动以及箱梁中央区域来流分离程度,进而改变箱梁的涡振振幅.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号