首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
高速公路降噪林带设计方法探讨   总被引:1,自引:0,他引:1  
以江苏省内部分高速公路路侧绿化带为对象,通过分析绿化带结构对交通噪声衰减的效果,重点探讨了高速公路高路基及缓坡路段与路堑路段绿化降噪林带的设计方法。研究结果表明,在不同立地条件下,降噪林带设计也不同,一般来说,填方路段林带结构以混合林带为主,挖方路段以纯林带为主。  相似文献   

2.
高速公路绿化降噪效果的心理感受调查与分析   总被引:1,自引:0,他引:1  
以南京机场高速和江苏淮盐高速盐城段的典型路侧绿化带为对象,重点探讨了高速公路降噪林带的结构、郁闭度、季节等因素与绿化降噪心理的作用关系。结果表明,郁闭度较大的混合型结构林带对心理烦恼度的改善作用较大,夏季对心理改善的程度较冬季明显。  相似文献   

3.
以声屏障、绿化林带和隔声窗等3种常见的高速公路噪声污染治理设施为研究对象,通过对3种设施的降噪效果进行监测分析,得出了3种设施的适用条件,研究结果对高速公路噪声污染治理设施的合理选择具有一定的指导作用。  相似文献   

4.
当前半封闭式声屏障逐渐在高速铁路工程中得到了应用,但其在运营状态下的实际降噪效果研究还极其有限.为此,以沪昆客专杭长段半封闭式声屏障为工程背景,分别在声屏障内、外表面,以及封闭侧和敞开侧不同距离处布置测点,监测高速列车通过时的噪声,并对场点的声压级频谱、声场分布、衰减规律、隔声量和插入损失等声学特性进行讨论.结果表明:多重反射造成的混响效应使得半封闭式声屏障内表面的噪声有所增大;距封闭侧线路中心7.5 m处,高位测点比低位测点声压级大,而其他位置不同高度测点在垂向的指向性不明显.半封闭式声屏障的隔声量随频率增加而增大,在1 000 Hz处最大约26 dB;距轨道中心线7.5 m和25 m处的插入损失均值为16.5 dB(A)和15.5 dB(A).   相似文献   

5.
为解决交通噪声对高速公路两侧村庄声环境影响问题,根据已建成公路交通噪声监测结果,给出高速公路交通噪声预测模型,对两侧声环境敏感点的交通噪声级进行计算,提出公路两侧分布村庄段采用双侧共振腔吸声砖吸声型声屏障降噪方法。声屏障工程实例及降噪监测结果表明,共振腔吸声砖声屏障降噪量达13~16 dB,具有构造简单,施工方便,造价低等特点,环境效益和经济效益比较显著。  相似文献   

6.
一般来说,树木影响风吹雪的主要因素有树种、树高、树冠密度、枝下高度、株距与行距、林带宽度、林带长度、林带与(盛行)主导风向角度、林带到道路的距离等等。对其中部分影响关系和防雪林周围和内部的风雪流状态进行了分析。  相似文献   

7.
为研究声屏障降噪的主要影响因素及规律,基于边界元理论,结合高速列车实测声源识别结果,建立了高速铁路声屏障降噪效果预测模型,研究了包括高速列车不同位置声源、声屏障高度、声屏障截面形状和吸声边界条件对插入损失的影响,并在此基础上提出了对现役声屏障结构的改进方案.研究结果表明,列车声源高度对声屏障插入损失有重要影响,现有2.15 m高声屏障只对车体下方噪声有降噪效果;随着声屏障高度增加,插入损失逐渐增大,声屏障高于6.15 m时,插入损失达到25 dB(A)以上;对于不同截面形式的声屏障,降噪效果从优到劣依次为Y型、倾斜型、T型、外折型、直立型和内折型,其中Y型比直立型插入损失高0.7~1.5 dB(A);对于任一类型声屏障,吸声引起的具体降噪效果与声屏障形式有关,有吸声边界条件的降噪效果要优于"刚性光滑"边界条件,前者与后者相比,其插入损失可提高0.3~6.4 dB(A).   相似文献   

8.
采用大涡模拟方法和FW-H声学模型对车用交流发电机气动噪声进行数值模拟,采用矢量合成方法优化交流发电机前扇叶分布角度,以低噪声、高流量与优化频谱结构降低单频旋转噪声为目标,分析了交流发电机气动噪声特性。分析结果表明:交流发电机噪声声压级、主要影响阶次与幅值的数值模拟与试验结果有很好的一致性;交流发电机气动噪声源为前后扇叶,总噪声的主要影响阶次为第6、8、10、12、18阶次,主要能量集中在1 120~5 600Hz范围内;总噪声最大预测误差为6.97dB,第12、18阶次旋转噪声预测误差分别为2.30、3.30dB;前扇叶分布角度优化后总噪声最大降幅为3.10dB,平均降幅为2.58dB,第12、18阶次噪声平均降幅为5.80dB,降噪效果明显。  相似文献   

9.
以某款弹性车轮及其原型普通车轮为研究对象,在考虑车轮旋转带来的移动荷载效应和陀螺效应的前提下,应用2.5维结构有限元法和2.5维声学边界元法预测车轮在给定轮轨粗糙度激励下的振动和声辐射;针对40、80和120 km·h-1三个运行速度,分析了弹性车轮的降噪机理,研究了弹性车轮橡胶层的材料参数对弹性车轮降噪效果的影响。研究结果表明:车轮旋转使得原本非0节径模态频率处的声功率峰值分叉为2个峰值,其中一个峰值频率比原模态频率高,另一个峰值频率比原模态频率低,2个峰值频率差近似等于车轮的旋转频率乘以2倍的模态节径数;在所考虑的工况下,车轮旋转对车轮声辐射的影响最高达3.2 dB(A),因此,在预测车轮的声辐射时,必须考虑旋转对预测结果的影响;如果橡胶弹性模量太小,则轮箍容易振动,从而有可能辐射比普通车轮更高的噪声;从车轮声辐射的角度,橡胶弹性模量存在一个最佳值,在这个值下,弹性车轮的声功率最低,且低于原型车轮的声功率10 dB(A)以上;增加橡胶阻尼总是有利于车轮噪声的控制,但增加阻尼产生的降噪效果随橡胶弹性模量的增大而降低;对于同一弹性车轮,随着运行速度的提升,相对原型普通车轮的降噪效果不断降低,速度从40 km·h-1增大到120 km·h-1,降噪效果降低达4 dB(A)以上。   相似文献   

10.
为了研究轨道交通车站在轨道区铺设道床吸音板后的降噪效果,采用声学间接边界元方法,建立轨道交通车站二维边界元模型,利用声学仿真软件分别对列车进出站时车站轨道区未铺设吸音板、半铺设吸音板和全铺设吸音板的降噪效果进行分析,最后对轨道交通车站在工程实际中在轨道区全铺道床吸音板的降噪效果进行现场实测与检验.结果表明:道床吸音板对于250~1 200Hz的噪声降低效果明显;轨道区半铺设吸音板时,站台区最大降噪效果为2.0~3.4dB,轨道区全铺设吸音板时,站台区最大降噪效果为4.0~6.7dB.道床吸音板降噪仿真结果与现场实测降噪效果具有较好的一致性.工程实际应用时,应结合车站轨道结构和声源构成等实际条件,对吸音板尺寸、安装形式与降噪效果进行对比论证,确保在经济合理的前提下获得最佳降噪效果.  相似文献   

11.
针对列车通过城市轨道交通高架时引起的桥梁-声屏障系统结构噪声问题,在某市域铁路箱梁段分别选取无声屏障和直立式声屏障地段,开展噪声现场测试;通过对比无声屏障和直立式声屏障地段的测试结果,分析了箱梁-声屏障系统结构噪声的频谱特性;基于有限元-边界元法,建立了箱梁-声屏障系统振动声辐射数值计算模型,研究了箱梁-声屏障系统结构噪声的空间分布规律,探讨了车速和声屏障高度对箱梁-声屏障系统结构噪声的影响。研究结果表明:当列车以约93 km·h-1的速度通过时,直立式声屏障对高频轮轨噪声起到了很好的降噪作用,但会使低频结构噪声增大;声屏障结构噪声的影响主要集中于160 Hz以下的低频段,箱梁-声屏障系统结构噪声的峰值出现在63 Hz左右;箱梁-声屏障系统结构噪声呈现出近场随距离衰减较快,远场随距离衰减越来越慢的趋势,箱梁正上方和正下方的结构噪声均超过96 dB,距离桥梁中心线120 m处的结构噪声衰减至72 dB;声屏障结构噪声对于梁侧声场的影响较大,与无声屏障地段相比,设置了高度为3.15 m的直立式声屏障之后,梁侧结构噪声增大了2~5 dB;当车速由93 km·h-1增大到120 km·h-1时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加7 dB以上;当声屏障高度由3.15 m增大至6.3 m时,箱梁-声屏障系统结构噪声辐射在梁侧最大增加3 dB以上。   相似文献   

12.
为探明城市轨道交通高架钢轨波磨地段振动噪声对沿线环境的影响,以某城市轨道交通高架钢轨波磨地段为研究对象,开展了列车以不同速度通过时的振动与噪声现场测试;基于测试结果分析了车速对城市轨道交通高架振动与噪声的影响,研究了城市轨道交通高架噪声的空间分布特性,解释了城市轨道交通高架钢轨波磨地段振动与噪声峰值产生的原因。研究结果表明:当列车分别以20、40、60、80、100和110 km·h-1的速度通过城市轨道交通高架钢轨波磨地段时,距线路中心线7.5 m、高于轨面1.2 m处的声压时程峰值分别约为0.6、0.9、1.3、1.9、2.3和3.3 Pa;轨面以上区域主要受轮轨噪声的影响,而梁体下方区域则主要受桥梁结构噪声的影响;轮轨噪声与车速之间存在着很强的线性相关性,而桥梁结构噪声与车速之间的线性相关性则略低,车速每增大10 km·h-1,轮轨噪声和桥梁结构噪声分别约增大1.7和1.1 dB;不同车速下城市轨道交通高架噪声随距离的衰减规律基本一致,测点与线路中心线的距离每增大1倍,测得的噪声约减小4.33 dB;钢轨波磨对城市轨道交通高架轮轨噪声的影响较为显著,钢轨波磨的波长决定了列车以不同速度过桥时钢轨振动加速度的峰值频率,进而影响轮轨噪声的峰值频率;城市轨道交通高架结构噪声的峰值频率主要与其自身的振动特性有关,与车速和钢轨波磨的关系并不大。   相似文献   

13.
分析了路面微表处噪声产生机理,设计了5种低噪声微表处,并与普通微表处进行对比,测试了不同微表处的构造深度及其噪声值;基于数字图像处理技术构建微表处纹理三维模型,挖掘相关纹理参数以评价不同微表处的构造和噪声特性;提出凸峰分布概率、凸峰面积占比2种路表纹理参数,并分析了该参数与室内噪声的相关性。分析结果表明:与普通中值级配微表处相比,低噪声级配微表处可降低噪声约3.1 dB;橡胶粉通过提高微表处的弹性和吸声特性降低表面构造和摆值,且掺入中值和低噪声级配微表处可分别降低噪声2.0与6.3 dB;水性环氧树脂通过改善微表处施工和易性,减少路面宏观纹理,且掺入中值级配的微表处能实现与低噪声级配微表处相似的降噪效果;基于表面纹理三维模型计算的像素差平均值与微表处的实际构造深度呈显著的线性关系,相关系数为0.94;中值级配和低噪声微表处的凸峰高度分布分别表现为一次函数和正态函数,级配的调整可显著减小低高度凸峰的分布率,且低高度的凸峰数量增加可丰富细观纹理,进而得出凸峰分布概率能够量化微表处纹理的分布特性;凸峰高度0.25 mm是各种微表处凸峰高度分布曲线的拐点,与所有凸峰高度的面积占比相比,凸峰高度...  相似文献   

14.
为研究列车通行对综合交通枢纽振动噪声的影响,以成渝高铁沙坪坝站为工程背景,通过现场试验实测了站房候车厅、站台、轨道板的振动加速度以及候车厅、站台区域、轨行区的辐射声压. 通过对实测信号分别进行了时域分析和1/3倍频程分析,探究了列车作用下站房的振动传递规律及噪声辐射特性. 结果表明:在列车运行荷载作用下,站房与站台的结构振动优势频段为10.0~80.0 Hz,振动随振源距离的增大而减小,站台到候车厅总振级衰减最大值达到13.5 dB;轨道板峰值振动加速度级出现在400.0 Hz处,约为101.0 dB;对候车厅而言,噪声声压级的优势频段为20.0~2 500.0 Hz,列车进站总声压级比列车出站高0.5~1.3 dB(A);对站台而言,噪声的优势频段为125.0~1 000.0 Hz,列车出站总声压级为86.3 dB(A),比列车进站时高1.3 dB(A);对轮轨噪声自身,其优势频段为200.0~2 500.0 Hz,列车进站噪声总声压级为91.1 dB(A),较列车出站时高3.2 dB(A).   相似文献   

15.
为研究桥墩刚度对高墩桥梁抗震性能的影响,以带溪高架桥为研究背景,利用midas-civil选波工具选取合适地震波,建立了一致激励地震作用下的连续梁桥,并考虑P-Δ效应和非线性的影响,分析桥墩高度、桥墩截面尺寸及形式对桥梁抗震影响。通过改变墩径(墩径由1.2 m变化至2.4 m)抗震分析表明双柱墩直径对墩顶位移影响效果并不明显,墩径过大会导致桥墩内力较大;对不同墩高(墩高由20 m变化至50 m)地震响应分析表明墩高对墩顶位移起到控制作用,但墩高变化对桥墩所受轴力影响不大;由于P-Δ效应和约束影响,全桥为中间高墩、两边矮墩时具有较小的地震响应;在墩高为30 m情况下,相对于薄壁墩和实体墩,双柱式墩具有较好的抗震性能。  相似文献   

16.
为比较不同轨下基础噪声水平,通过ABAQUS建立声-固耦合模型,模拟结构振动产生的声场中的噪声变化.选取声场中的声压值转化得到的声压级值作为定量评价两种沥青混凝土轨下基础(ACRS-1型、ACRS-2型)和普通板式(SlabTrack)结构产生的噪声水平.结果表明,选用的声-固耦合模型可以较好地评估不同轨下基础下噪声.比较3种轨下基础结构可以发现,总体上, ACRS-1型和ACRS-2型结构要比普通板式结构的噪声要低,特别是ACRS-2型结构,比其他两种结构的噪声均要低.噪声降低的幅值出现在0.01、0.02、0.03 s附近,尤其在0.02 s附近, ACRS-2型结构低于普通板式结构的噪声幅值10~20 dB, ACRS-1型结构低于普通板式结构的噪声幅值5 dB左右.   相似文献   

17.
针对重载铁路弹性支承块式无砟轨道(LVT)在实际应用中出现的弹性部件变形过大、易损坏等问题, 优化设计了既有弹性支承块, 将支承块短侧边坡度由1∶17.00调整为1∶4.85, 取消了块下垫板, 并采用一体化弹性套靴; 为验证设计成果, 建立了传统型LVT和改进型LVT足尺模型, 采用质量为1 120 kg的重载货车轮对, 以20 mm的落高进行落轴冲击试验, 分别从时域和频域角度对比分析了冲击作用下竖向振动在钢轨、支承块、道床板、底座板及地面等结构部件沿线路纵、竖、横向的传递衰减特性。研究结果表明: 轮轨产生的高频振动能量沿钢轨纵向传递, 低频振动能量传递给下部其他轨道结构; 竖向冲击振动在纵、竖向传递的过程中不断衰减且衰减速率逐渐降低, 在支承块和道床板表面横向传递过程中, 向外侧边缘传递振动增大; 相比传统型LVT, 改进型LVT整体弹性系数减小21.1%, 而阻尼系数增大5.4%, 其振动周期、衰减时长、振动峰值分别比传统型LVT小37.0%、21.3%和3.4%, 各结构部位功率谱密度峰值比传统型LVT小30%以上; 改进型LVT轨道结构各部位Z振级比传统型LVT小, 在地面处减小了3.65 dB, 能更有效、迅速地衰减轮轨冲击力和轨道结构振动, 振动水平更低, 降低了冲击作用对环境的影响。研究结果对于开展LVT减振性能试验验证、优化与工程应用有参考价值。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号