首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
为探讨车辆在城市道路上实际行驶时间,合理规划道路交通流,提出一种改进的城市道路阻抗函数模型。城市道路阻抗分为路段延误和交叉口延误,其中路段延误采用王素欣改进的道路阻抗函数模型对SPIESS路阻函数进行修正,利用城市道路交通流三参数速度、交通量、密度的关系推导出交通饱和度与交通密度的关系式。在交叉口节点延误中对Webster模型进行改进,并对整个道路阻抗函数模型进行相关道路影响因素(交叉口间距、行人自行车干扰、道路宽度)的修正,最后利用百度地图的智能实时路况查询服务来获取道路数据。通过对改进的城市道路阻抗函数模型得出的实验结果进行验证对比与独立样本T检验,结果表明改进的道路阻抗函数更贴近实际行驶时间,对路径规划和智能交通平台有参考意义。  相似文献   

2.
基于行程时间对交通需求的影响,建立路段交通流模型,对路段交通流量稳定性及通行能力的退化状态进行分析.在出行者的交通需求具有弹性的情况下,路段行程时间越长,交通需求越低.模型中行程时间由道路上的交通状态决定,车辆行驶过程的计算利用MITSIM模型,通过数值模拟方法分析弹性需求对交通流的稳定性及通行能力的影响.仿真结果表明,在交通需求和路段性能相互作用下,路段交通流量趋向于稳定,非饱和状态下的稳定流量随着交通压力的增加逐渐上升到最大通行能力,而饱和状态下的稳定流量小于最大通行能力且交通压力越高通行能力退化越严重.因此在城市路网规划时,应综合考虑路网中各路段通行能力,避免路段通行能力下降.  相似文献   

3.
实时路段行程时间预测是动态交通分配中路径选择的关键技术之一,采用微观交通仿真手段和指数平滑方法估计路段行程时间,在路段行程时间估计模型中考虑了交叉口排队延误、信号控制延误和交叉口内转向行程时间,提出了基于灰色等维新息GM(1,1)模型的路段行程时间预测方法,根据路段行程时间的历史数据和实时采集数据,滚动预测未来的路段行程时间,通过实例应用证明了模型有很好的预测精度.  相似文献   

4.
在固定检测器和浮动车数据的路段行程时间估计基础上,利用两种估计方法数据之间的互补性,应用自适应加权平均融合算法对估计结果进行融合处理,从而实现对路段行程时间更为精确的动态估计.以大连市中心城区为主要研究对象,通过交通调查和VISSIM仿真环境实现对固定检测器和浮动车的数据收集和行程时间估计.结果显示自适应加权平均融合能够有效提高路段行程时间估计精度,且适用于不同流量状态下的路段行程时间估计.  相似文献   

5.
基于卡尔曼滤波算法的公交车辆行程时间预测   总被引:1,自引:0,他引:1  
通过分析公交车辆的行驶特性,利用卡尔曼滤波算法建立行程时间预测模型,并用该模型预测未来时段的公交车辆路段行程时间.预测结果表明,该方法预测精度较高,可有效地改善公交车辆动态调度效果,提高交通资源利用率,因此该方法具有推广意义.  相似文献   

6.
了解路段旅行时间随交通状况变化特性对利用探测车等新式交通检测技术估计交通状态非常重要.基于交通微观仿真模型,分析了路段旅行时间随交通状况的变化特性,验证了平均路段旅行时间是否能够采集通畅、拥挤到堵塞这三个状态,以及是否能细分这三个交通状态.结果表明:(1)平均路段旅行时间能够判断上述三个状态;(2)在拥挤阶段,随着交通状态恶化,平均路段旅行时间逐步增加,因此能够细分拥挤状态为多个子状态,但由于在通畅阶段,即便流量增加,平均路段旅行时间基本不变,因此无法细分通畅状态,细分通畅状态需要流量信息;(3)路段旅行时间在拥挤状态时处于双峰分布,难以用少量的探测车提供的数据可靠地估计平均路段旅行时间.  相似文献   

7.
路段平均行程时间估计方法   总被引:6,自引:0,他引:6  
为了有效利用线圈检测数据,精确估计路段平均行程时间,提出了一种路段平均行程时间估计方法。将路段平均行程时间分为平均行驶时间、平均排队时间和平均通过路口时间三部分。考虑线圈埋设的特点,通过估计平均行驶速度得到平均行驶时间。用分段时齐Poisson过程描述车辆驶入路段过程和驶离过程,用Markov排队模型描述车辆排队过程,用生灭过程描述排队车辆数,得到车辆排队模型,计算了路段有、无初始排队的平均排队时间。基于选取与路口相关的饱和流率和平均车长,计算了平均通过路口时间。计算结果表明:平均行程时间估计值与实测值的误差小于12%,说明路段平均行程时间估计方法可行。  相似文献   

8.
为了深入研究基于路段与基于路径两种不同的建模方法在城市快速路行程时间短时预测中的预测效果,以车牌识别系统采集的行程时间数据为研究对象,分别采用历史平均法、神经网络模型、支持向量机回归模型、非参数回归模型4种典型的预测算法,对快速路的行程时间进行预测。研究结果表明,考虑交通特征的支持向量机模型会显著提高基于路段的行程时间预测效果,同时基于路径的非参数回归建模方法优于基于路段的组合建模方法,更适合城市快速路行程时间预测。  相似文献   

9.
从减少城市交叉口车辆排放的角度出发,根据行驶方向与行驶工况变化对车辆尾气排放的 影响,建立了车辆在直行和左转过程中完全停车、不完全停车以及不停车3 种状态下的机动车综 合排放模型,并将其与延误相结合,提出以车辆延误与排放的综合指标为优化目标,基于等饱和 度优化分解算法对信号周期进行求解的优化控制模型。使用VISSIM 微观交通仿真软件分别对原 有配时、Webster 优化配时和文中提出的综合指标优化配时进行了仿真实验和对比分析。结果表 明,采用文中算法优化的配时在交叉口总延误时间、总排放量和综合指标PI 方面都明显减少,优 化效果显著。  相似文献   

10.
为优化区域交通网络中各信号控制器的配时方案,利用递推最小二乘算法(RLS)和同时扰动随机近似(SPSA)算法,由检测器流量估计DynaCHINA动态网络交通仿真与分析系统的动态OD矩阵,输入并标定各路段的速度-密度模型参数和饱和流量,获得网络状态的准确估计,包括各路段的速度、密度、流量、队列长度等;在此基础上,利用SPSA算法优化各信号控制器配时参数,包括各信号控制器的周期、相位差和绿信比,使得网络中车辆的平均旅行延误、队列长度、或交叉口通过量等指标最优. 针对实际路网的测试表明,本文的参数标定方法可以获得准确的检测器流量估计,结果明显优于Ashok K的动态OD矩阵与检测器流量估计方法;与现有的基于Synchro信号配时优化软件获得的结果相比较,该方法可较大幅度缩短车辆在路网中的平均旅行延误,并可推广应用于更复杂的区域路网的信号控制参数优化等场合.  相似文献   

11.
为分析高速公路交通流检测数据质量,本文构建平方流量误差界(Squared Flow Error Bound, SFEB)和扩展卡尔曼滤波(Extended Kalman Filter, EKF)的决策级融合模型SFEB-EKF,在检测器空间覆盖不足情况下,计算检测路段和无检测器路段的交通状态估计误差界限。与SFEB 算法相比,融合模型利用EKF交通状态估计模型估计全路段交通状态,基于得到的估计样本计算全路段交通状态估计误差下界。同时,采用最近邻法(Nearest Neighbor Method, NNM)计算全路段交通状态估计误差上界。应用开源高速公路数据集测试模型,结果表明,与需要输入真实样本的SFEB算法相比,融合模型SFEB-EKF在缺少真实样本情况下,能取得相似的结果且误差保持 在5%以内,不同检测器覆盖率实验下模型表现出良好的稳定性。本文模型通过给出无检测器路段交通状态估计界限,为高速公路交通检测器布设方案提供参考。  相似文献   

12.
基于网络对偶均衡的有边约束的交通流分配模型   总被引:1,自引:0,他引:1  
利用网络对偶均衡理论,依据“局部近视”用户均衡原则建立了具有一般边约束的网络交通流分配模型. 将交通网络中的流量与行程时间看作一对对偶的变量. 从网络的基本组成元素入手,首先考虑网络节点的流量守恒条件与节点距起点最小行程时间对偶关系,然后考虑路段流量与“局部近视”用户路段行程时间约束条件的对偶关系,最后通过整合上述对偶关系,并增加一般边约束建立了新的交通流分配模型. 分析了模型求解过程中如何体现“优先出牌”与“在途调整弹性”两个择路行为假设. 利用模型求解结果中分起讫点对的路段流量唯一的特点,给出了确定有效路径集的搜索算法. 用算例验证了模型及算法的有效性,并对具有一般边约束的流量分配模型的计算结果从拥挤收费和路段排队延误角度进行了解释.  相似文献   

13.
基于转向的Logit交通分配算法   总被引:9,自引:3,他引:6  
为避免交通分配中传统的网络扩展法在处理转向延误时的缺陷,通过分析网络基本要素节点、路段和转向之间的拓扑关系,借鉴Dial算法的基本框架,设计了一个基于转向的Logit交通分配算法。该算法以源点至路段的含转向延误的最短路径长度为依据处理各条路段,正向计算转向权重,反向分配路段流量和转向流量。算法计算结果与Logit路径流量和Dial算法数据相一致,该算法可直接求解既满足Logit路径选择概率又考虑转向延误对交通分配影响的路段流量和转向流量模式,而且Dial算法是其在转向延误为零时的一个特例。  相似文献   

14.
为优化区域交通网络中各信号控制器的配时方案,利用递推最小二乘算法(RLS)和同时扰动随机近似(SPSA)算法,由检测器流量估计DynaCHINA动态网络交通仿真与分析系统的动态OD矩阵,输入并标定各路段的速度-密度模型参数和饱和流量,获得网络状态的准确估计,包括各路段的速度、密度、流量、队列长度等;在此基础上,利用SPSA算法优化各信号控制器配时参数,包括各信号控制器的周期、相位差和绿信比,使得网络中车辆的平均旅行延误、队列长度、或交叉口通过量等指标最优. 针对实际路网的测试表明,本文的参数标定方法可以获得准确的检测器流量估计,结果明显优于Ashok K的动态OD矩阵与检测器流量估计方法;与现有的基于Synchro信号配时优化软件获得的结果相比较,该方法可较大幅度缩短车辆在路网中的平均旅行延误,并可推广应用于更复杂的区域路网的信号控制参数优化等场合.  相似文献   

15.
为了制定安全高效的应急疏散预案,分析了SCOOT和BOTTLENECK算法的适应性,提出一种基于路口和路段入口综合控制的优化算法.新算法利用SCOOT算法对路口进行信号协调控制,利用BOTTLENECK算法对路段入口交通进行汇入控制,并通过严格控制延误目标将两种算法进行优化整合,确保主要疏散方向上的优先通行权,同时减少汇入交通对疏散车辆的干扰和延误,从而最大限度挖掘路网在应急状态下的疏散通行能力.仿真结果表明:在应急疏散交通条件下采用优化算法,能够将疏散车辆平均行程时间缩短近60%,平均速度提高约1.5倍,因此,提高了应急疏散效率,算法可行.  相似文献   

16.
为提高单向交通路网运行效率,本文提出了一种单向交通路网绿波协调控制方法。首先, 分析不同类型的单行环路特征,考虑行人专用相位,建立单行环路中的路段行驶时间与交叉口信 号配时参数之间的约束关系,推导环路偏移绿信比的计算公式,以所有路段平均偏移绿信比最小 作为优化目标,给出最佳公共信号周期优化算法;然后,分析环路偏移绿信比与各路段偏移绿灯 时间的关系,根据约束关系将各个最小环路的偏移绿信比分配到环路上的单向路段,推导绿波带 宽大小计算方法;随后,以单向交通路网平均带宽占比最大为目标优化交叉口绿信比,给出交叉 口相位差计算方法,实现单向交通路网信号协调控制方案的优化求解;最后,以一个3×3的单向交 通路网为例进行案例分析,结果表明:利用本文方法求得的信号配时方案可以获得明显的绿波效 果,能够使所有交叉口的带宽占比均在70%以上,总体绿波效果优于SYNCHRO方案。针对未饱 和状态下的3种不同流量输入条件,利用VISSIM仿真实验,发现与SYNCHRO方案相比,本文提 出方案的路网直行车辆平均延误时间分别降低了9.0%、16.4%、26.1%,平均停车次数分别降低了 31.2%、48.8%、41.6%,路网的服务水平明显提升,有效验证了本文方法的可行性与优越性。  相似文献   

17.
为提高公交到站时间预测精度,提出基于双层BPNN与前序路段状态的综合预测模型. 基于静态变量及顶层BPNN模型预测车辆到达每个站点的初始行程时间,利用K-means 聚类及马尔科夫链模型基于前序路段状态预测目标路段行驶时间;将上述两个模型的预测值及上一班次车辆的行程时间作为输入变量,基于底层BPNN模型预测车辆在目标路段的行程时间,进而动态调整车辆到达每个站点的时间. 以上海市791 路公交车早晚高峰各路段的行程时间为例进行模型测试,并与其他4 种模型进行比较. 结果表明,所提模型具有较高的预测精度,尤其在雨天,比传统BPNN模型预测精度提高57.25%.  相似文献   

18.
当港湾式公交站相邻外侧车道交通流量较大时,由于缺乏合适的可插入间隙将使公交车辆产生过多的延误。本文采用可穿插间隙理论,首先分析公交车辆出站过程,再确定公交车辆从启动到汇入路段车流的时间构成,其次确定公交车辆穿越临近车道交通流所需的临界间隙数值,从而确定不同流量路段港湾式公交停靠站公交车辆出站延误模型,最后利用VISSIM仿真软件,对外侧车道设置不同流量参数,并设置行程时间检测器,获得公交车辆延误仿真效果。  相似文献   

19.
针对高峰期路网各路段流量分布的不均匀性以及出行时间延误大的现象,将关键路段引入到动态交通流量的分配中,考虑关键路段对路网上流量分布的影响,在进行动态交通配流的过程中对关键路段上的流量进行控制。本文以系统总出行时间最小为目标,建立基于关键路段流量限制的动态交通分配模型,根据高峰时段路网上流量的特性与不同路段的不同特性,将关键路段的流量限制在合理的范围内,把超出其容量的流量合理转移到其他路段上,进行流量的协同分配,保证路网的正常运行,提高路网效率,从而缓解高峰期拥堵现象。最后设计了相应的遗传算法对模型进行求解,得到了各路段上流量的合理分布。  相似文献   

20.
为提高城市快速路网的整体功能和运行效益,利用实时动态交通数据,根据动态交通因素对路段通行时间的影响,将城市快速路网划分为非拥塞和拥塞两种情况,基于安全停车距离和剩余通行能力,分别计算了两种情况的路段通行时间,提出了以行程时间最短为目标的城市快速路网行程时间计算与最优路径选择算法.将该算法应用于西安城市快速路网进行案例分析,结果表明:该算法的最优路径计算结果与实际相符,误差在15%以内;最优路径的距离约为最短路径的1.84倍.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号