首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 905 毫秒
1.
采用有限元方法,分析了正交异性板桥面铺装在结构和荷载因素变化时受力状态的变化规律;比较了有无纵隔板、桥面板厚度、加劲肋板厚度对受力的影响;分析了竖向、水平荷载对铺装层受力的影响。结果表明:有纵隔板时的横向拉应力为全桥面的铺装拉应力控制指标;增大桥面板厚度有利于减少桥面刚度不均,减小铺装层内的应力;加劲肋厚度的变化对加强结构刚度有利却对桥面铺装的受力不利;超载对应力状态极为不利,紧急制动产生的水平力会导致很大的纵向拉应力。  相似文献   

2.
钢桥面铺装的拉应力分析   总被引:7,自引:0,他引:7  
针对典型的钢桥桥面铺装体系,采用SAP有限元软件,分析了铺装层内的拉应力的变化规律。分析表明,铺装层的最大横向拉应力远远大于最大纵向拉应力,最大横向拉应力通常出现在梯形加颈肋肋顶的铺装层表面,铺装层的模量也对拉应力影响很大。  相似文献   

3.
提出一种钢-超薄UHPC(Ultra-High Performance Concrete)层轻型组合桥面,既使得该组合桥面能运用于铺装层较薄的桥面结构,又降低了正交异性钢桥面的疲劳开裂风险,避免了沥青铺装的病害问题。以某大桥为工程背景,从有限元分析和试验两方面对此结构的性能进行研究。结果表明:35 mm UHPC层对正交异性钢桥面板受力性能改善明显,顶板应力幅下降达到68.72%,U肋和横隔板接近14.74%~34.11%,可大大降低钢桥面板疲劳开裂风险。试验得出的UHPC层横桥向开裂强度26.3 MPa,大于有限元计算下车辆荷载作用产生的最大应力7.36 MPa,证明了此组合桥面结构的可行性。  相似文献   

4.
陈常杰  姚波 《北方交通》2008,(6):115-118
以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

5.
为改善钢桥面铺装受力状况,针对国内某斜拉桥钢箱梁纵隔板位置,建立了全断面钢箱梁节段和铺装的力学计算新模型,分析了两种纵隔板设置方案在荷载作用下铺装层最大拉应力、铺装与钢板层间最大剪应力等技术指标的变化及分布规律。结果表明,由于纵隔板的竖向刚度很大,在荷载作用下,纵隔板上方的铺装产生较大的横向拉应力,具有明显局部效应;荷载处于桥面板与U型加劲肋焊接点的正上方时,横向拉应力在距横隔板0~0.2m范围内快速增加,在0.2m处出现峰值;采用纵隔板设置方案二进行钢箱梁结构设计,优化了铺装的受力状况,横向荷位3为铺装最不利荷位。  相似文献   

6.
通过建立钢箱梁桥面板有限元模型,采用子模型计算了模拟焊缝位置,分析了不同构造尺寸下焊缝位置热点应力,研究了顶板厚度、U肋宽度及板厚、横隔板间距及板厚、铺装厚度及刚度等对焊趾和焊根处疲劳应力的影响。研究结果表明:随着顶板厚度和铺装层厚度及刚度的增加,焊缝位置热点应力减小;随着U肋板厚和上缘宽度的增加,焊缝处热点应力增加;随着U肋高度和横隔板间距及厚度的增加,热点应力变化不明显。顶板的厚度增加时,焊趾与焊根应力之比减小,可导致焊趾-顶板裂纹的概率增加。  相似文献   

7.
钢桥桥面铺装层间剪应力影响因素及简化计算   总被引:5,自引:1,他引:5  
为了减小钢桥桥面铺装层间剪应力,建立桥面系三维有限元计算模型,分析了不同荷位、钢板厚度、U肋开口宽度、铺装厚度、铺装模量、层间接触条件以及轴载大小对铺装层间纵横向剪应力的影响,推导了实用的应力简化计算公式。研究发现桥面板不均匀变形使得铺装层间剪应力远大于同条件下的路面结构;影响显著的因素依次为轴载大小、钢板厚度、U肋开口宽度以及铺装参数;层间完全光滑有利于抗剪,但降低了桥面系整体刚度;控制重载,加强桥面系刚度与选择柔性层间粘结材料是减小层间剪应力的有效措施。  相似文献   

8.
为研究胶粉改性沥青桥面铺装层在受力过程中的特性,立足实际工程,利用ABAQUS有限元软件建立力学模型并进行数值模拟分析。主要分析了不同铺装层厚度、不同弹性模量、不同的铺装层泊松比对桥面铺装层在车道荷载作用下的受力特征,结果表明:上下面层的厚度对铺装层的剪应力及拉应力均有影响;在一定范围内,最大水平拉、剪应力随弹性模量的增加而增加;铺装层纵向最大水平拉、剪应力随着泊松比的增加变小,变化量不明显。  相似文献   

9.
根据线弹性理论和层状体系理论,用有限元分析方法对钢箱梁桥面铺装层的弯沉量、层顶弯拉应力、粘结层与桥面板结合处的主剪切应力的分布与变化进行了计算与分析,确定了最大弯沉量、最大弯拉应力和最大层间剪切应力的产生位置及其量值。研究结果可以为大跨径钢箱梁桥面柔性铺装设计提供理论参考。  相似文献   

10.
针对闭口肋正交异性钢桥面板顶板焊根处疲劳裂纹处于纵肋内部, 不易发现与危害大等问题, 根据所处位置的不同, 将顶板焊根疲劳细节分为横隔板节间内(RD细节) 和跨横隔板截面(RDF细节) 2种类型, 采用有限元方法分析了2种细节的应力影响面, 考虑了轮迹横向概率分布、多轴轮载作用以及铺装与桥面板相互作用等影响, 研究了2种细节的疲劳损伤特征。分析结果表明: 当轮载作用于目标细节正上方时为最不利状态, 纵桥向轮载中心移至目标细节前后0.6m范围内应力较大, 横桥向2种细节的轮载影响均在1.0m范围内; 考虑轮迹横向分布影响, 简化计算时, RD、RDF细节的等效应力幅横向折减系数可以分别取0.92、0.96;在双、三联轴作用下, RD细节的损伤度分别是单轴荷载的2.10、3.21倍, 若近似采用单轴叠加, 所得损伤度可能偏于不安全, 建议寿命评估时考虑车辆类型影响; 计入铺装与桥面板相互作用后, 细节处应力幅明显降低, 顶板厚度为12mm的铺装模型焊根处应力幅几乎与16mm厚的钢桥面板相当, 且降低程度随铺装弹性模量的增大而增大; 对于45°扩散角简化铺装扩散模型, 当顶板厚度不小于16mm时, 其应力幅小于同时考虑铺装扩散作用与铺装刚度贡献的实体模型, 且差值随顶板厚度的增加而增大, 简化时需要考虑其适用范围, 否则会偏于不安全; 当顶板厚度为18mm且考虑铺装作用时, 2种细节疲劳寿命满足设计使用寿命要求, RDF细节疲劳寿命约为RD细节的67%, 较为不利。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号